APACHE UNOMI 2.X -
DOCUMENTATION

TABLE OF CONTENTS

1. WhatOs new.
1.1. WhatOs new in Apache Unomi 2.0
1.1.1. Introducing profiles aliases
1.1.2. Scopes declarations are now required
1.1.3. JSON Schemas
1.1.4. Updated data model
1.1.5. New Web Tracker
1.1.6. GraphQL API - beta
1.1.7. Migrate from Unomi 1.x
1.1.8. Elasticsearch compatibility
2. Discover Unomi
2.1. Quick start with Docker
2.2. Quick Start manually
2.3. Getting started with Unomi
2.3.1. Prerequisites
2.3.2. Running Unomi
2.4. Unomi web tracking tutorial
2.4.1. Installing the web tracker in a web page
2.4.2. Creating a scope to collect the data
2.4.3. Using tracker in your own JavaScript projects
2.4.4. Viewing collected events
2.4.5. Viewing the current profile
2.4.6. Adding a rule
2.4.7. Adding personalization
2.4.8. Conclusion
2.4.9. Next steps
3. Apache Unomi Recipes and requests
3.1. Recipes
3.1.1. Introduction
3.1.2. Enabling debug mode
3.1.3. How to read a profile
3.1.4. How to update a profile from the public internet
3.1.5. How to search for profile events
3.1.6. How to create a new rule
3.1.7. How to search for profiles
3.1.8. Getting / updating consents
3.1.9. How to send a login event to Unomi
3.1.10. What profile aliases are and how to use them
3.2. Request examples
3.2.1. Retrieving your first context
3.2.2. Retrieving a context as a JSON object.
3.2.3. Accessing profile properties in a context
3.2.4. Sending events using the context servlet
3.2.5. Sending events using the eventcollector servlet

NN D DD

10
10
10
10
11
12
12
12
13
43
45
45
17
17
18
18
20
20
20
20
20
20
21
22
27
28
29
30
30
31
34
34
34
34
35
36

Apache Unomi 2.x - Documentation - 1

3.2.6. Where to go from here
4. Configuration
4.1. Centralized configuration

4.2. Changing the default configuration using environment variables (i.e. Docker configuration)

4.3. Changing the default configuration using property files
4.4. Secured events configuration
4.5, Installing the MaxMind GeolPLite2 IP lookup database
4.6. Installing Geonames database
4.7. REST API Security
4.8. Scripting security
4.8.1. Multi-layer scripting filtering system
4.8.2. Scripts and expressions
4.8.3. Scripting expression filtering configuration parameters
4.8.4. Groovy Actions
4.8.5. Scripting roadmap
4.9. Automatic profile merging
4.10. Securing a production environment
4.11. Integrating with an Apache HTTP web server
4.12. Changing the default tracking location
4.13. Apache Karaf SSH Console
4.14. ElasticSearch authentication and security
4.14.1. User authentication !
4.14.2. SSL communication
4.14.3. Permissions
5. JSON schemas
5.1. Introduction
5.1.1. What is a JSON Schema
5.1.2. Key concepts
5.1.3. How are JSON Schema used in Unomi
5.2. JSON schema API
5.2.1. List existing schemas
5.2.2. Read a schema
5.2.3. Create / update a JSON schema to validate an event
5.2.4. Deleting a schema
5.2.5. Error Management
5.2.6. Details on invalid events
5.3. Extend an existing schema
5.3.1. When a extension is needed?
5.3.2. Understanding how extensions are merged in unomi
5.3.3. How to add an extension through the API
6. GraphQL API
6.1. Introduction
6.2. Enabling the API
6.3. Endpoints
6.4. GraphQL Schema
7. Migrations
7.1. From version 1.6 to 2.0
7.2. Migration Overview
7.3. Updating applications consuming Unomi
7.3.1. Data Model changes
7.3.2. Create JSON schemas

Apache Unomi 2.x - Documentation - 2

37
37
37
38
38
39
40
41
41
41
41
42
45
a7
50
50
50
52
54
55
55
55
55
56
56
56
56
57
60
62
62
62
63
63
64
64
64
64
64
65
66
66
66
66
66
66
67
67
67
67
67

7.4. Migrating your existing data
7.4.1. Elasticsearch version and capacity
7.4.2. Migrate custom data
7.4.3. Perform the migration
7.5. From version 1.5to 1.6
7.6. From version 1.4 to 1.5
7.6.1. Data model and ElasticSearch 7
7.6.2. API changes
7.6.3. Migration steps
7.7. Important changes in public servlets since version 1.5.5 and 2.0.0

8. Queries and aggregations

8.1. Query counts
8.2. Metrics
8.3. Aggregations
8.3.1. Aggregation types

9. Profile import & export

10.

11.

12.

13.

9.1. Importing profiles
9.1.1. Import API
9.2. Exporting profiles
9.2.1. Export API
9.3. Configuration in details
Consent management
10.1. Consent API
10.1.1. Profiles with consents
10.1.2. Consent type definitions
10.1.3. Creating / update a visitor consent
10.1.4. How it works (internally)
Privacy management
11.1. Setting up access to the privacy endpoint
11.2. Anonymizing a profile
11.3. Downloading profile data
11.4. Deleting a profile
11.5. Related
Cluster setup
12.1. Cluster setup
Reference
13.1. Useful Apache Unomi URLs
13.2. How profile tracking works
13.2.1. Steps
13.3. Context Request Flow
13.4. Data Model Overview
13.5. Scope
13.5.1. Example
13.6. Item
13.6.1. Structure definition
13.7. Metadata
13.7.1. Structure definition
13.7.2. Example
13.8. Metadataltem
13.8.1. Structure definition
13.8.2. Example

68
68
68
68
71
71
71
72
2
74
74
5
5
/6
g7
82
82
83
84
84
86
87
87
388
89
89
91
92
92
93
93
93
93
94
94
94
94
95
95
96
97
98
98
99
99
400
100
401
402
402
402

Apache Unomi 2.x - Documentation - 3

13.9. Event 102

13.9.1. Fields 103
13.9.2. Event types 104
13.10. Profile 104
13.10.1. Structure definition 104
13.10.2. Example 105
13.11. Profile aliases 107
13.11.1. Structure definition 107
13.11.2. Example 108
13.12. Persona 108
13.12.1. Structure definition 108
13.12.2. Example 408
13.13. Consent 109
13.13.1. Structure definition 109
13.13.2. Example 109
13.14. Session 109
13.14.1. Structure definition 110
13.14.2. Example 110
13.15. Segment 412
13.15.1. Structure definition 112
13.15.2. Example 113
13.16. Condition 114
13.16.1. Structure definition 115
13.16.2. Example 115
13.17. Rule 116
13.17.1. Structure definition 118
13.17.2. Example 118
13.18. Action 119
13.18.1. Structure definition 119
13.18.2. Example 120
13.19. List 120
13.19.1. Structure definition 120
13.19.2. Example 120
13.20. Goal 121
13.20.1. Structure definition 121
13.20.2. Example 421
13.21. Campaign 122
13.21.1. Structure definition 122
13.21.2. Example 123
13.22. Scoring plan 124
13.22.1. Structure definition 425
13.22.2. Example 125
13.23. Built-in Event types 126
13.23.1. Login event type 126
13.23.2. View event type 128
13.23.3. Form event type 129
13.23.4. Update properties event type 431
13.23.5. Identify event type 133
13.23.6. Session created event type 135
13.23.7. Goal event type 136
13.23.8. Modify consent event type 138

Apache Unomi 2.x - Documentation - 4

14.

15.

16.

13.24. Built-in condition types
13.24.1. Existing condition type descriptors
13.25. Built-in action types
13.25.1. Existing action types descriptors
13.26. Updating Events Using the Context Servlet
13.26.1. Solution
13.26.2. Defining Rules
13.27. Unomi Web Tracker reference
13.27.1. Custom events
13.27.2. Integrating with tag managers
13.27.3. Cookie/session handling
13.27.4. JavaScript API
Integration samples
14.1. Samples
14.2. Login sample
14.2.1. Warning !
14.2.2. Installing the samples
14.3. Twitter sample
14.3.1. Overview
14.3.2. Interacting with the context server
14.3.3. Retrieving context information from Unomi using the context servlet
14.4. Example
14.4.1. HTML page
14.4.2. Javascript
14.5. Conclusion
14.6. Annex
14.7. Weather update sample
Connectors
15.1. Connectors
15.1.1. Call for contributors
15.2. Salesforce Connector
15.2.1. Getting started
15.2.2. Properties
15.2.3. Hot-deploying updates to the Salesforce connector (for developers)
15.2.4. Using the Salesforce Workbench for testing REST API
15.2.5. Setting up Streaming Push queries
15.2.6. Executing the unit tests
15.3. MailChimp Connector
15.3.1. Getting started
Developers
16.1. Building
16.1.1. Initial Setup
16.1.2. Building
16.1.3. Installing an ElasticSearch server
16.1.4. Deploying the generated binary package
16.1.5. Deploying into an existing Karaf server
16.1.6. JDK Selection on Mac OS X
16.1.7. Running the integration tests
16.1.8. Testing with an example page
16.2. SSH Shell Commands
16.2.1. Using the shell

141
142
143
143
144
144
145
145
145
148
149
149
150
150
150
150
150
151
151
152
152
153
153
153
165
165
166
166
166
167
167
167
169
169
170
170
170
171
171
173
173
173
173
174
174
175
176
176
177
177
177

Apache Unomi 2.x - Documentation - 5

16.2.2.
16.2.3.

Lifecycle commands
Runtime commands

16.3. Writing Plugins
16.4. Types vs. instances
16.5. Plugin structure
16.6. Extension points

16.6.1.
16.6.2.
16.6.3.
16.6.4.
16.6.5.
16.6.6.
16.6.7.
16.6.8.
16.6.9.

ActionType

ConditionType

Persona
PropertyMergeStrategyType
PropertyType

Rule

Scoring

Segments

Tag

16.6.10. ValueType
16.7. Custom plugins

16.7.1.
16.7.2.
16.7.3.
16.7.4.
16.7.5.
16.7.6.
16.7.7.
16.7.8.
16.7.9.

Creating a plugin

Deployment and custom definition
Predefined segments

Predefined rules

Predefined properties

Predefined child conditions
Predefined personas

Custom action types

Custom condition types

16.8. Migration patches

APACHE

SOFTWARE FOUNDATION
apache.org

1. WHATOS NEW

1.1. WHATOS NEW IN APACHE UNOMI 2.0

Apache Unomi

Apache Unomi 2 is a new release focused on improving core functionalities and robustness of the
product.

The introduction of tighter data validation with JSON Schemas required some changes in the product
data model, which presented an opportunity for noticeable improvements in the overall performance.

This new release also introduces a first (beta) version of the Unomi GraphQL API.

1.1.1. INTRODUCING PROFILES ALIASES

Profiles may now have alias IDs, which is a new way to reference profiles using multiple IDs. The Unomi

2.x - Documentation - 6

178
479
483
183
183
184
184
485
185
485
485
485
485
185
186
186
186
186
187
188
188
489
490
190
491
493
194

ID still exists, but a new index with aliases can reference a single Unomi profile. This enables more
flexible integrations with external systems, as well as provide more flexible and reliable merging
mechanisms. A new REST APl makes it easy to define, update and remove aliases for profiles. You can
read more about profile aliases here .

1.1.2. SCOPES DECLARATIONS ARE NOW REQUIRED

Scopes declarations are now required in Unomi 2. When submitting an event and specifying a scope,
that scope must already be declared on the platform.

Scopes can be easily created via the corresponding REST APl (cxs/scopes)

For example, an "apache" scope can be created using the following API call.

curl --location --request POST 'http://localhost:8181/cxs/scopes' \
-u 'karaf:karaf' \

--header 'Content-Type: application/json' \

--data-raw {

“itemld": "apache",

"itemType": "scope”

y

1.1.3. JISON SCHEMAS

Apache Unomi 2 introduces support for JSON Schema for all of its publicly exposed endpoints. Data
received by Apache Unomi 2 will first be validated against a known schema to make sure it complies
with an expected payload. If the received payload does not match a known schema, it will be rejected by
Apache Unomi 2.

Apache Unomi 2 also introduces a set of administrative endpoints allowing new schemas and/or
schemas extensions to be registered.

More details about JSON Schemas implementation are available in the corresponding section of the
documentation.

1.1.4. UPDATED DATA MODEL

The introduction of JSON schema required us to modify Apache Unomi data model, One of the key
differences is the removal of open maps.

The properties field in the events objects provided by unomi are now restricted by JSON schema. This
means object properties must be declared in a JSON schema for an event to be accepted.

A new property, flattenedProperties has been introduced to the event object, this property has been
added to store the properties as flattened in Elasticsearch and should avoid mapping explosion for

dynamic properties.

If there is dynamic properties that you want to send with your event, you should use the

Apache Unomi 2.x - Documentation - 7

https://json-schema.org/specification.html

flattenedProperties field of the event.

ItOs also necessary to specify the format of the values which are added to flattenedProperties by JSON
schema but these value will be stored as flattened and will not create dynamic mapping contrary to the
properties field of the events.

Here is an example for objects that used dynamic properties for URL parameters:

The following event example in Apache Unomi 1.x:

"eventType":"view",

"scope":"digitall”,

"properties™:{
"URLParameters":{

"utm_source":"source"

}

Ji

"target":{
"scope":"digitall",
"itemld":"30c0a9e3-4330-417d-9c66-4clbeec85f08",
"itemType":"page",
"properties":{

"pagelnfo":{
"pagelD":"30c0a9e3-4330-417d-9c66-4c1beec85f08",
"nodeType":"jnt:page”,

"pageName":"Home",

h
"attributes":{},

"consentTypes"[]
}
b
"source":{
"scope":"digitall”,
"itemld":"ff5886e0-d75a-4061-9de9-d90dfc9e18d8",
"itemType":"site"

}

S~ [Tp [T > M > M T T M T M T T T T M T T T T T T T T T T T

Is replaced by the following in Apache Unomi 2.x:

Apache Unomi 2.x - Documentation - 8

"eventType":"view",
"scope":"digitall",
"flattenedProperties":{
"URLParameters":{
"utm_source":"source"

}

h

"target":{
"scope":"digitall",
"itemld":"30c0a9e3-4330-417d-9c66-4c1beec85f08",
"itemType":"page”,
"properties":{

"pagelnfo™:{
"pagelD":"30c0a9e3-4330-417d-9c66-4clbeec85f08",
"nodeType":"jnt:page”,

"pageName":"Home",

}!
"attributes":{},

"consentTypes":[]
}
Ji
"source":{
"scope":"digitall",
"itemld";"ff5886e0-d75a-4061-9de9-d90dfc9e18d8",
"itemType":"site"

}

S [T [Ty M e T M T T T T T T T T T T T T T T ™ T T T Ty m mp s

If using the default Apache 1.x data model, our Unomi 2 migration process will handle the data model
changes for you.

If you are using custom events/objects, please refer to the detailed migration guide for more details.

1.1.5. NEW WEB TRACKER

Apache Unomi 2.0 Web Tracker, located in extensions/web-tracker/ has been completely rewritten. It is
no longer based on an external library and is fully self-sufficient. It is based on an external contribution
that has been used in production on many sites.

You can find more information about the new web tracker here

1.1.6. GRAPHQL API - BETA

Apache Unomi 2.0 sees the introduction of a new (beta) GraphQL API. Available behind a feature flag
(the API disabled by default), the GraphQL API is available for you to play with.

More details about how to enable/disable the GraphQL API are available in the corresponding section of
the documentation.

Apache Unomi 2.x - Documentation - 9

We welcome tickets/PRs to improve its robustness and progressively make it ready for prime time.

1.1.7. MIGRATE FROM UNOMI 1.X

To facilitate migration we prepared a set of scripts that will automatically handle the migration of your
data from Apache Unomi 1.5+ to Apache Unomi 2.0.

It is worth keeping in mind that for Apache Unomi 2.0 we do not support OhotO migration, the migration
process will require a shutdown of your cluster to guarantee that no new events will be collected while
data migration is in progress.

Special caution must be taken if you declared custom events as our migration scripts can only handle

objects we know of. More details about migration (incl. of custom events) is available in the
corresponding section corresponding section of the documentation.

1.1.8. ELASTICSEARCH COMPATIBILITY

We currently recommend using Elasticsearch 7.17.5 with Apache Unomi 2.0, this ensure you are on a
recent version that is not impacted by the log4j vulnerabilities (fixed in Elasticsearch 7.16.3).

This version increase is releated to Apache Unomi 2.0 makeing use of a new Elasticsearch field type
called Flattened , and although it was available in prior versions of Elasticsearch, we do not recommend
using those due to the above-mentioned log4j vulnerabilities.

2. DISCOVER UNOMI

2.1. QUICK START WITH DOCKER

Begin by creating a docker-compose.yml| file with the following content:

Apache Unomi 2.x - Documentation - 10

https://www.elastic.co/guide/en/elasticsearch/reference/7.17/flattened.html

version: '3.8'
services:
= elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:7.17.5
environment:
- discovery.type=single-node
ports:
- 9200:9200
unomi:
Unomi version can be updated based on your needs
image: apache/unomi:2.0.0
environment:
- UNOMI_ELASTICSEARCH_ADDRESSES=elasticsearch:9200
- UNOMI_THIRDPARTY_PROVIDER1_IPADDRESSES=0.0.0.0/0,::1,127.0.0.1
ports:
- 8181:8181
- 9443:9443
- 8102:8102
links:
- elasticsearch
depends_on:
- elasticsearch

T M > > m> T T me T T e e e me me m» e me e m

From the same folder, start the environment using docker-compose up and wait for the startup to
complete.

Try accessing https://localhost:9443/cxs/cluster — with username/password: karaf/karaf . You might get a
certificate warning in your browser, just accept it despite the warning it is safe.

2.2. QUICK START MANUALLY

1) Install JDK 8 (https://lwww.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html) and make sure you set the JAVA_HOME variable https://docs.oracle.com/cd/E19182-01/
820-7851/inst_cli_jdk_javahome_t/ (see our Getting Started guide for more information on JDK
compatibility)

2) Download ElasticSearch here : https://www.elastic.co/downloads/past-releases/elasticsearch-7-17-5
(please make sure you use the proper version : 7.17.5)

3) Uncompress it and change the config/elasticsearch.yml to include the following config
<code>cluster.name: contextElasticSearch</code>

4) Launch ElasticSearch using : bin/elasticsearch
5) Download Apache Unomi here : https://unomi.apache.org/download.html
6) Start it using : ./bin/karaf

7) Start the Apache Unomi packages using unomi:start in the Apache Karaf Shell

Apache Unomi 2.x - Documentation - 11

https://localhost:9443/cxs/cluster
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/
https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/
https://www.elastic.co/downloads/past-releases/elasticsearch-7-17-5
https://unomi.apache.org/download.html

8) Wait for startup to complete

9) Try accessing https://localhost:9443/cxs/cluster with username/password: karaf/karaf . You might get a
certificate warning in your browser, just accept it despite the warning it is safe.

10) Request your first context by simply accessing : http://localhost:8181/cxs/context.js?sessionld=1234

11) If something goes wrong, you should check the logs in Jdata/log/karaf.log . If you get errors on
ElasticSearch, make sure you are using the proper version.

Next steps:

¥ Trying our integration ~ samples page

2.3. GETTING STARTED WITH UNOMI

We will first get you up and running with an example. We will then lift the corner of the cover
somewhat and explain in greater details what just happened.

2.3.1. PREREQUISITES

This document assumes working knowledge of git to be able to retrieve the code for Unomi and the
example. Additionally, you will require a working Java 8 or above install. Refer to
http://www.oracle.com/technetwork/javal/javase/ for details on how to download and install Java SE 8 or
greater.

JDK COMPATIBILITY

Starting with Java 9, Oracle made some big changes to the Java platform releases. This is why Apache
Unomi is focused on supporting the Long Term Supported versions of the JDK, currently versions 8 and
11. We do not test with intermediate versions so they may or may not work properly. Currently the most
tested version is version 8 and version 11 is also supported.

Also, as there are new licensing restrictions on JDKs provided by Oracle for production usages, Apache
Unomi has also added support for OpenJDK builds. Other JDK distributions might also work but are not
regularly tested so you should use them at your own risks.

ELASTICSEARCH COMPATIBILITY

Starting with version 2.0.0 Apache Unomi adds compatibility with ElasticSearch 7.17.5 . It is highly
recommended to use the ElasticSearch version specified in the documentation whenever possible. If in
doubt, donOt hesitate to check with the Apache Unomi community to get the latest information about
ElasticSearch version compatibility.

2.3.2. RUNNING UNOMI

Apache Unomi 2.x - Documentation - 12

https://localhost:9443/cxs/cluster
http://localhost:8181/cxs/context.js?sessionId=1234
https://git-scm.com/
http://www.oracle.com/technetwork/java/javase/

START UNOMI

Start Unomi according to the quick start with docker or by compiling using the building instructions
Once you have Karaf running, you should wait until you see the following messages on the Karaf
console:

Initializing user list service endpoint...
Initializing geonames service endpoint...
Initializing segment service endpoint...
Initializing scoring service endpoint...
Initializing campaigns service endpoint...
Initializing rule service endpoint...
Initializing profile service endpoint...
Initializing cluster service endpoint...

This indicates that all the Unomi services are started and ready to react to requests. You can then open a
browser and go to http://localhost:8181/cxs to see the list of available RESTful services or retrieve an
initial context at http://localhost:8181/cxs/context.json (which isnOt very useful at this point).

You can now find an introduction page at the following location: http://localhost:8181

Also now that your service is up and running you can go look at the request examples to learn basic
requests you can do once your server is up and running.

2.4. UNOMI WEB TRACKING TUTORIAL

In this tutorial we will guide through the basic steps of getting started with a web tracking project. You
will see how to integrate the built-in web tracker with an existing web site and what this enables.

If you prefer to use existing HTML and Javascript rather than building your own, all the code we feature

in this tutorial is extracted from our tracker sample which is available here: https://github.com/apache/
unomi/blob/master/extensions/web-tracker/wab/src/main/webapp/index.html . However you will still
need to use the REST API calls to create the scope and rule to make it all work.

2.4.1. INSTALLING THE WEB TRACKER IN A WEB PAGE

Using the built-in tracker is pretty simple, simply add the following code to your HTML page :

E <script type="text/javascript" src="/tracker/unomi-web-tracker.min.js"></script>

or you can also use the non-minified version that is available here:

E <script type="text/javascript" src="/tracker/unomi-web-tracker.js"></script>

This will only load the tracker. To initialize it use a snipper like the following code:

Apache Unomi 2.x - Documentation - 13

http://localhost:8181/cxs
http://localhost:8181/cxs/context.json
http://localhost:8181
https://github.com/apache/unomi/blob/master/extensions/web-tracker/wab/src/main/webapp/index.html
https://github.com/apache/unomi/blob/master/extensions/web-tracker/wab/src/main/webapp/index.html

<script type="text/javascript">
(function () {
const unomiTrackerTestConf = {
"scope": "unomi-tracker-test",
"site": {
"sitelnfo": {
"sitelD": "unomi-tracker-test"

}
I
"page": {
"pagelnfo”: {
"pagelD": "unomi-tracker-test-page”,
"pageName": document.title,
"pagePath": document.location.pathname,
"destinationURL": document.location.origin + document.location.pathname,
"language™: "en",
"categories": [],
"tags": []
I
"attributes"; {},
"consentTypes": []
b
"events:": [],
"wemlnitConfig": {
"contextServerUrl": document.location.origin,
"timeoutInMilliseconds": "1500",
"contextServerCookieName": "context-profile-id",
"activateWem": true,
"trackerSessionldCookieName": "unomi-tracker-test-session-id",
"trackerProfileldCookieName": "unomi-tracker-test-profile-id"

}
}

[T ™ [T TP T [T T > TP T T TP T T T T TP T T T [T T T [T T [T [T T [T TP Th TP

/I generate a new session

if
(unomiWebTracker.getCookie(unomiTrackerTestConf.wemlinitConfig.trackerSessionldCookieName)
== null) {

E
unomiWebTracker.setCookie(unomiTrackerTestConf.wemlnitConfig.trackerSessionldCookieName,
unomiWebTracker.generateGuid(), 1);

E
E

E }

E // init tracker with our conf

E unomiWebTracker.initTracker(unomiTrackerTestConf);
E unomiWebTracker._registerCallback(() => {

E console.log("Unomi tracker test successfully loaded context",
unomiWebTracker.getLoadedContext());

E 1, 'Unomi tracker test callback example');

E I/ start the tracker

E unomiWebTracker.startTracker();

E DO

E </script>

Apache Unomi 2.x - Documentation - 14

2.4.2. CREATING A SCOPE TO COLLECT THE DATA

You might notice the scope used in the snippet. All events sent to Unomi must be associated with a scope,
that must have been created before events are accepted. So in order to make sure the events are
collected with the above Javascript code, we must create a scope with the following request.

curl --location --request POST 'http://localhost:8181/cxs/scopes' \
E --header 'Authorization: Basic a2FyYWY6a2FyYWY="\
--header 'Content-Type: application/json’ \
--data-raw {
"itemld": "unomi-tracker-test",
"metadata": {
"id": "unomi-tracker-test",
"name": "Unomi tracker Test Scope"
}
y

[T [T > T e Ty e mp

The authorization is the default username/password for the REST API, which is karaf:karaf and you that
should definitely be changed as soon as possible by modifying the etc/users.properties file.

2.4.3. USING TRACKER IN YOUR OWN JAVASCRIPT PROJECTS

The tracker also exists as an NPM library that you can integrate with your own Javascript projects. You
can find the library here:

https://www.npmjs.com/package/apache-unomi-tracker
HereOs an example on how to use it:
E yarn add apache-unomi-tracker

You can then simply use it in your JS code using something like this:

Apache Unomi 2.x - Documentation - 15

import {useTracker} from "apache-unomi-tracker";

(function () {

const unomiWebTracker = useTracker();

const unomiTrackerTestConf = {
"scope": "unomi-tracker-test",

"site™: {
"sitelnfo": {
"sitelD": "unomi-tracker-test"
}
h
"page": {
"pagelnfo": {

"pagelD": "unomi-tracker-test-page",
"pageName": document.title,
"pagePath": document.location.pathname,
"destinationURL": document.location.origin + document.location.pathname,
"language": "en",
"categories": [],
"tags": []
3
"attributes": {},
"consentTypes": []
h
"events:": [],
"wemlnitConfig": {
"contextServerUrl": document.location.origin,
"timeoutInMilliseconds": "1500",
"contextServerCookieName": "context-profile-id",
"activateWem": true,
"trackerSessionldCookieName": "unomi-tracker-test-session-id",
“"trackerProfileldCookieName": "unomi-tracker-test-profile-id"

[T T [T T T [T T T TP T T TP T T T T TP T TP T [T T T [T TP T T T [T TP [Th

}

/I generate a new session

if
(unomiWebTracker.getCookie(unomiTrackerTestConf.wemlinitConfig.trackerSessionldCookieName)
== null) {

E
unomiWebTracker.setCookie(unomiTrackerTestConf.wemlnitConfig.trackerSessionldCookieName,
unomiWebTracker.generateGuid(), 1);

E }

E
E

/I init tracker with our conf
unomiWebTracker.initTracker(unomiTrackerTestConf);

> mp

unomiWebTracker._registerCallback(() => {
console.log("Unomi tracker test successfully loaded context",
nomiWebTracker.getLoadedContext());
}, 'Unomi tracker test callback example');

m < [Ty [mp

E // start the tracker
E unomiWebTracker.startTracker();

no;

Apache Unomi 2.x - Documentation - 16

2.4.4. VIEWING COLLECTED EVENTS

There are multiple ways to view the events that were received. For example, you could use the following
CURL request:

curl --location --request POST ‘http://localhost:8181/cxs/events/search’ \
E --header 'Authorization: Basic a2FyYWY6a2FyYWY="\
E --header 'Content-Type: application/json’ \
--data-raw '{

"sortby” : "timeStamp:desc”,

"condition” : {

"type" : "matchAllCondition"

}

y

T e [[T e mp

Another (powerful) way to look at events is to use the SSH Console. You can connect to it with the
following shell command:

E ssh -p 8102 karaf@localhost

Using the same username password (karaf:karaf) and then you can use command such as :

¥ event-tail to view in realtime the events as they come in (CTRL+C to stop)

¥ event-list to view the latest events

¥ event-view EVENT_ID to view the details of a specific event

2.4.5. VIEWING THE CURRENT PROFILE

By default, Unomi uses a cookie called context-profile-id to keep track of the current profile. You can use

this the value of this cookie which contains a UUID to lookup the details of the profile. For example with
the SSH console you can simply to:

profile-view PROFILE_UUID

Which will print out the details of the profile with the associated ID. Another interesting command is
profile-list to list all the recently modified profiles

You could also retrieve the profile details using the REST API by using a request such as this one:

curl --location --request GET 'http://localhost:8181/cxs/profiles/PROFILE_UUID' \
--header 'Authorization: Basic a2FyYWY6a2FyYWY="\

Apache Unomi 2.x - Documentation - 17

2.4.6. ADDING A RULE

Rules are a powerful ways to react in real-time to incoming events. For example a rule could update a
profile when a certain event comes in, either copying values from the event or performing some kind of
computation when the event occurs, including accessing remote systems such as a Salesforce CRM (see
the Salesforce connector sample).

In this example we will simply setup a basic rule that will react to the view event and set a property in
the current profile.

curl --location --request POST ‘http://localhost:8181/cxs/rules’ \
--header 'Authorization: Basic a2FyYWY6a2FyYWY="\
--header 'Content-Type: application/json’ \
--data-raw {
"metadata”: {

"id": "viewEventRule",

"name": "View event rule",

"description”: "Increments a property on a profile to indicate that this rule executed successfully
when a view event occurs"
Ji
"condition": {

"type": "eventTypeCondition",

"parameterValues": {

"eventTypeld": "view"

T e M T

}
h
"actions™: [

{

"type": "incrementPropertyAction”,
"parameterValues": {

"propertyName": "pageViewCount"
}
}
]

[T T e T I [T e e T T e T T [T [Th

=

The above rule will execute when a view event is received (which is automatically sent by the tracker
when a page is loaded) and increments a property called pageViewCount on the userOs profile.

You can then reload then page and check with the profile-view PROFILE_UUID SSH command that the
profile was updated with the new property and that it is incremented on each page reload.

You can also use the rule-list command to display all the rules in the system and the rule-tail to watch in
real-time which rules are executed. The rule-view RULE_ID command will let you view the contents of a
rule.

2.4.7. ADDING PERSONALIZATION

The last step is to use the newly added property to the profile to perform some page personalization. In
order to do that we will use the trackerOs API to register a personalization that will be using a condition
that checks if the pageViewCount is higher than 5. If it has, variantl will be displayed, otherwise the

Apache Unomi 2.x - Documentation - 18

fallback variant variant2 will be used instead.

variants = {
"varl": {
content : "variantl",
I
"var2" : {
content : "variant2",
}
}

unomiWebTracker.registerPersonalizationObject({
"id": "testPersonalization”,
"strategy": "matching-first",
"strategyOptions": {"fallback": "var2"},
"contents": [{
"id": "varl",
"filters™: [{
"condition™: {
"type": "profilePropertyCondition”,
"parameterValues": {
"propertyName" : "properties.pageViewCount.<scope>",
"comparisonOperator" : "greaterThan",
"propertyValuelnteger" : 5
}
}
1
hA
"id": "var2"
1
}, variants, false, function (successfulFilters, selectedFilter) {
if (selectedFilter) {
document.getElementByld(selectedFilter.content).style.display = ";
}
i

[T ™ [T TP T [T T > TP T TP TP T T T T TP T T T [T T T [T TP [T T T [T TP Th TP

As you can see in the above code snippet, a variants array is created with two objects that associated
personalization IDs with content IDs. Then we build the personalization object that contains the two IDs

and their associated conditions (only a condition on varl is passed in this case) as well as an option to
indicate which is the fallback variant in case no conditions are matched.

The HTML part of this example looks like this:

<div id="variant1" style="display: none">
You have already seen this page 5 times
</div>
<div id="variant2" style="display: none">
Welcome. Please reload this page 5 times until it triggers the personalization change
</div>

[T [T [T T [T TP

As you can see we hide the variants by default so that there is no "flashing" effect and then use the
callback function to display to variant resolve by UnomiOs personalization engine.

Apache Unomi 2.x - Documentation - 19

2.4.8. CONCLUSION

What have we achieved so far ?

¥ Installed a tracker in a web page

¥ Created a scope in which to collect the data

¥ Learned how to use the tracker as an NPM library

¥ How to view the collected events

¥ How to view the current visitor profile

¥ How to add a rule to update a profile property

¥ How to personalize a web pageOs content based on the property updated by the rule
Of course this tutorial is just one example of what could be achieved, and hasnOt even yet introduced
more advanced notions such as profile segmentation or Groovy action scripting. The system is capable

of much more, for example by directly using its actions to integrate with third-party systems (CRM,
social networks, etc..)

2.4.9. NEXT STEPS

¥ Learn more about the web tracker, custom events, API, E
¥ Learn more about segmentation
¥ View some more samples

¥ Continue reading UnomiOs user manual to see all that is possible with this technology

3. APACHE UNOMI RECIPES AND REQUESTS

3.1. RECIPES

3.1.1. INTRODUCTION

In this section of the documentation we provide quick recipes focused on helping you achieve a specific
result with Apache Unomi.

3.1.2. ENABLING DEBUG MODE

Although the examples provided in this documentation are correct (they will work "as-is"), you might be
tempted to modify them to fit your use case, which might result in errors.

The best approach during development is to enable Apache Unomi debug mode, which will provide you
with more detailed logs about events processing.

The debug mode can be activated via the karaf SSH console (default credentials are karaf/karaf):

Apache Unomi 2.x - Documentation - 20

ubuntu@ip-10-0-3-252:~/$ ssh -p 8102 karaf@localhost
Password authentication

Password:

E __ -

E /I]
E /</_1__1_ Il

E /NI LI T 1T

E /L /IN_, /1 _, 11

E Apache Karaf (4.2.15)

Hit '<tab>' for a list of available commands

and '[cmd] --help' for help on a specific command.

Hit 'system:shutdown' to shutdown Karaf.

Hit '<ctrl-d>" or type 'logout’ to disconnect shell from current session.

karaf@root()> log:set DEBUG org.apache.unomi.schema.impl.SchemaServicelmpl

You can then either watch the logs via your preferred logging mechanism (docker logs, log file, E) or
simply tail the logs to the terminal you used to enable debug mode.

karaf@root()> log:tail

08:55:28.128 DEBUG [qtp1422628821-128] Schema validation found 2 errors while validating against
schema: https://unomi.apache.org/schemas/json/events/view/1-0-0

08:55:28.138 DEBUG [qtp1422628821-128] Validation error: There are unevaluated properties at
following paths $.source.properties

08:55:28.140 DEBUG [qtp1422628821-128] Validation error: There are unevaluated properties at
following paths $.source.itemld, $.source.itemType, $.source.scope, $.source.properties

08:55:28.142 ERROR [qtp1422628821-128] An event was rejected - switch to DEBUG log level for more
information

The example above shows schema validation failure at the $.source.properties path. Note that the
validation will output one log line for the exact failing path and a log line for its parent, therefore to find
the source of a schema validation issue itOs best to start from the top.

3.1.3. HOW TO READ A PROFILE

The simplest way to retrieve profile data for the current profile is to simply send a request to the
lcxs/context.json endpoint. However you will need to send a body along with that request. HereOs an
example:

Here is an example that will retrieve all the session and profile properties, as well as the profileOs
segments and scores

Apache Unomi 2.x - Documentation - 21

curl -X POST http://localhost:8181/cxs/context.json?sessionld=1234 \
-H "Content-Type: application/json™ \
--data-raw '{
"source": {
"itemld":"homepage",
"itemType":"page"”,
"scope":"example”
h
"requiredProfileProperties":["*"],
"requiredSessionProperties":["*"],
"requireSegments™:true,
"requireScores":true

T ™ T e e Ty e mp e

=

The requiredProfileProperties and requiredSessionProperties are properties that take an array of
property names that should be retrieved. In this case we use the wildcard character *' to say we want to
retrieve all the available properties. The structure of the JSON object that you should send is a JSON-
serialized version of the ContextRequest Java class.

Note that it is also possible to access a profileOs data through the /cxs/profiles/ endpoint but that really
should be reserved to administrative purposes. All public accesses should always use the
/cxs/context.json endpoint for consistency and security.

3.1.4. HOW TO UPDATE A PROFILE FROM THE PUBLIC INTERNET

Before we get into how to update a profile directly from a request coming from the public internet, weOll
quickly talk first about how NOT to do it, because we often see users using the following anti-patterns.

HOW NOT TO UPDATE A PROFILE FROM THE PUBLIC INTERNET

Please avoid using the /cxs/profile endpoint. This endpoint was initially the only way to update a profile
but it has multiple issues:

¥ it requires authenticated access. The temptation can be great to use this endpoint because it is
simple to access but the risk is that developers might include the credentials to access it in non-
secure parts of code such as client-side code. Since there is no difference between this endpoint and
any other administration-focused endpoints, attackers could easily re-use stolen credentials to
wreak havock on the whole platform.

¥ No history of profile modifications is kept: this can be a problem for multiple reasons: you might
want to keep an trail of profile modifications, or even a history of profile values in case you want to
understand how a profile property was modified.

¥ Even when protected using some kind of proxy, potentially the whole profile properties might be
modified, including ones that you might not want to be overriden.

RECOMMENDED WAYS TO UPDATE A PROFILE

Instead you can use the following solutions to update profiles:

Apache Unomi 2.x - Documentation - 22

http://unomi.apache.org/unomi-api/apidocs/org/apache/unomi/api/ContextRequest.html

¥ (Preferred) Use you own custom event(s) to send data you want to be inserted in a profile, and use
rules to map the event data to the profile. This is simpler than it sounds, as usually all it requires is
setting up a simple rule, defining the corresponding JSON schema and youOre ready to update
profiles using events.

¥ Use the protected built-in "updateProperties" event. This event is designed to be used for
administrative purposes only. Again, prefer the custom events solution because as this is a
protected event it will require sending the Unomi key as a request header, and as Unomi only
supports a single key for the moment it could be problematic if the key is intercepted. But at least
by using an event you will get the benefits of auditing and historical property modification tracing.

LetOs go into more detail about the preferred way to update a profile. LetOs consider the following
example of a rule:

Apache Unomi 2.x - Documentation - 23

curl -X POST http://localhost:8181/cxs/rules \
--user karaf:karaf \
-H "Content-Type: application/json" \
--data-raw {
E "metadata": {
= "id": "setContactinfo",
"name": "Copy the received contact info to the current profile",
"description": "Copies the contact info received in a custom event called 'contactinfoSubmitted' to
the current profile”
E}.
F "raiseEventOnlyOnceForSession": false,
"condition: {
"type": "eventTypeCondition",
"parameterValues™: {
"eventTypeld": "contactinfoSubmitted"
}
)i
"actions": [
{
"type": "setPropertyAction”,
"parameterValues": {
"setPropertyName": "properties(firstName)",
"setPropertyValue": "eventProperty::properties(firstName)",
"setPropertyStrategy": "alwaysSet"
}
h
{
"type": "setPropertyAction”,

"parameterValues": {
"setPropertyName": "properties(lastName)",
"setPropertyValue": "eventProperty::properties(lastName)",
"setPropertyStrategy": "alwaysSet"
}
I

{
"type": "setPropertyAction”,

"parameterValues": {
"setPropertyName": "properties(email)",
"setPropertyValue": "eventProperty::properties(email)”,
"setPropertyStrategy": "alwaysSet"
}
}
]

[T > M

T M > m> m> T me me e e e me me me m o me me me me me e e me me o me me me me e meom

=

What this rule does is that it listen for a custom event (events donOt need any registration, you can
simply start sending them to Apache Unomi whenever you like) of type 'contactinfoSubmitted' and it
will search for properties called ‘'firstName', 'lastName' and 'email' and copy them over to the profile
with corresponding property names. You could of course change any of the property names to find your
needs. For example you might want to prefix the profile properties with the source of the event, such as
'mobileApp:firstName'.

Now that our rule is defined, the next step is to create a scope and a JSON Schema corresponding to the
event to be submitted.

Apache Unomi 2.x - Documentation - 24

We will start by creating a scope called "example" scope:

curl --location --request POST 'http://localhost:8181/cxs/scopes' \
-u 'karaf:karaf' \

--header 'Content-Type: application/json' \

--data-raw '{

"itemld": "example"”,

"itemType": "scope"

y

The next step consist in creating a JSON Schema to validate our event.

curl --location --request POST 'http://localhost:8181/cxs/jsonSchema’ \
-u 'karaf:karaf" \
--header 'Content-Type: application/json' \
--data-raw '{
"$id": "https://unomi.apache.org/schemas/json/events/contactinfoSubmitted/1-0-0",
"$schema": "https://json-schema.org/draft/2019-09/schema”,
"self": {
"vendor": "org.apache.unomi",
"name": "contactinfoSubmitted",
"format": "jsonschema”,
"target": "events",
"version": "1-0-0"
h
"title": "contactinfoSubmittedEvent",
"type": "object",
"allof"; [{ "$ref": "https://unomi.apache.org/schemas/json/event/1-0-0" }],
"properties": {

"source" : {

"$ref" : "https://lunomi.apache.org/schemas/json/item/1-0-0"
h
"target" : {

"$ref" : "https://lunomi.apache.org/schemas/json/item/1-0-0"
h

"properties": {
"type": "object",
"properties": {

"firstName": {

"type": ["null", "string"]
}1
"lastName": {

"type": ["null", "string"]
}1
"email": {

"type": ["null", "string"]
}

}
}
2

"unevaluatedProperties": false

[T T [T TP T [T T T TP T TP T T TP T TP TP [T T T [T TP T T T [T TP T [T T T [T T TP [Th

=

Apache Unomi 2.x - Documentation - 25

You can notice the following in the above schema:

¥ We are creating a schema of type "events" ("self.target" equals "events")

¥ The name of this schema is "contactinfoSubmitted”, this MUST match the value of the "eventType"
field in the event itself (below)

¥ To simplify our schema declaration, weQOre referring to an already existing schema
(https://lunomi.apache.org/schemas/json/item/1-0-0) to validate the "source" and "target" properties.

Apache Unomi ships with a set of predefined JSON Schemas, detailed here: https://github.com/

apache/unomil/tree/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/
schemas.

¥ "unevaluatedProperties": false indicates that the event should be rejected if it contains any
additional metadata.

Finally, send the contactinfoSubmitted event using a request similar to this one:

curl -X POST http://localhost:8181/cxs/eventcollector \
-H "Content-Type: application/json™ \

--data-raw {

"sessionld" : "1234",

"events":[

{

"eventType":"contactinfoSubmitted”,
"scope": "example",
"source":
"itemType": "site",
"scope": "example",
"itemld": "mysite"
b
"target":{
"itemType": "form",
"scope": "example”,
“itemld": "contactForm"
b
"properties" : {
"firstName": "John",
"lastName": "Doe",

"email": "john.doe@acme.com"

[T T [T» TP T [T T T TP T T T T TP T T TP T T T [T TP

=

The event we just submitted can be retrieved using the following request:

Apache Unomi 2.x - Documentation - 26

https://unomi.apache.org/schemas/json/item/1-0-0
https://github.com/apache/unomi/tree/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas
https://github.com/apache/unomi/tree/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas
https://github.com/apache/unomi/tree/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas

curl -X POST http://localhost:8181/cxs/events/search \
--user karaf:karaf \
-H "Content-Type: application/json™ \

--data-raw {

E "offset" : 0,

E "limit" : 20,

E "condition" : {

E "type": "eventPropertyCondition",
E "parameterValues" : {

E "propertyName" : "properties.firstName",
E "comparisonOperator" : "equals",
E "propertyValue" : "John"

E }

E}

=

TROUBLESHOOTING COMMON ERRORS

There could be two types of common errors while customizing the above requests: * The schema is
invalid * The event is invalid

While first submitting the schema during its creation, Apache Unomi will validate it is syntaxically
correct (JSON) but will not perform any further validation. Since the schema will be processed for the
first time when events are submitted, errors might be noticeable at that time.

Those errors are usually self-explanatory, such as this one pointing to an incorrect Icoation for the
"firstName" keyword:

09:35:56.573 WARN [qtp1421852915-83] Unknown keyword firstName - you should define your own
Meta Schema. If the keyword is irrelevant for validation, just use a NonValidationKeyword

If an event is invalid, the logs will contain details about the part of the event that did not validate against
the schema. In the example below, an extra property "abcd" was added to the event:

12:27:04.269 DEBUG [qtp1421852915-481] Schema validation found 1 errors while validating against
schema: https://unomi.apache.org/schemas/json/events/contactinfoSubmitted/1-0-0

12:27:04.272 DEBUG [qtp1421852915-481] Validation error: There are unevaluated properties at
following paths $.properties.abcd

12:27:04.273 ERROR [qtp1421852915-481] An event was rejected - switch to DEBUG log level for more
information

3.1.5. HOW TO SEARCH FOR PROFILE EVENTS

Sometimes you want to retrieve events for a known profile. You will need to provide a query in the body
of the request that looks something like this (and documentation is available in the REST APl) :

Apache Unomi 2.x - Documentation - 27

https://unomi.apache.org/rest-api-doc/#1768188821

curl -X POST http://localhost:8181/cxs/events/search \
--user karaf:karaf \
-H "Content-Type: application/json™ \

--data-raw {

E "offset" : 0,

E "limit" : 20,

E "condition" : {

E "type": "eventPropertyCondition",

E "parameterValues" : {

E "propertyName" : "profileld",

E "comparisonOperator" : "equals",
E ‘"propertyValue" : "PROFILE_ID"
E }

E}

-

where PROFILE_ID is a profile identifier. This will indeed retrieve all the events for a given profile.

3.1.6. HOW TO CREATE A NEW RULE

There are basically two ways to create a new rule :

¥ Using the REST API
¥ Packaging it as a predefined rule in a plugin
In both cases the JSON structure for the rule will be exactly the same, and in most scenarios it will be

more interesting to use the REST API to create and manipulate rules, as they donOt require any
development or deployments on the Apache Unomi server.

Apache Unomi 2.x - Documentation - 28

curl -X POST http://localhost:8181/cxs/rules \
--user karaf:karaf \

-H "Content-Type: application/json™ \
--data-raw {

"metadata"; {

"id": "exampleEventCopy",

"name": "Example Copy Event to Profile",

"description": "Copy event properties to profile properties"
h
"condition: {

"type": "eventTypeCondition",
"parameterValues": {
"eventTypeld" : "myEvent"
}
h
"actions": [
{
"parameterValues": {
h
"type": "allEventToProfilePropertiesAction”
}
]

[T T [T T [T T mp T T e T mp T T T T T [T

—

The above rule will be executed if the incoming event is of type myEvent and will simply copy all the
properties contained in the event to the current profile.

3.1.7. HOW TO SEARCH FOR PROFILES

In order to search for profiles you will have to use the /cxs/profiles/search endpoint that requires a
Query JSON structure. HereOs an example of a profile search with a Query object:

Apache Unomi 2.x - Documentation - 29

curl -X POST http://localhost:8181/cxs/profiles/search \
--user karaf:karaf \
-H "Content-Type: application/json™ \

--data-raw {
"text" : "unomi",
"offset" : 0,
“limit" : 10,
"sortby" : "properties.lastName:asc,properties.firstName:desc",
"condition” : {

"type" : "booleanCondition",
"parameterValues" : {
"operator” : "and",
"subConditions" : [
{
"type": "profilePropertyCondition”,
"parameterValues": {
"propertyName": "properties.leadAssignedTo",

"comparisonOperator”: "exists"
}
}1

{
"type": "profilePropertyCondition",

"parameterValues": {
"propertyName": "properties.lastName",
"comparisonOperator": "exists"

SZ [T Ty M e T [Th

In the above example, you search for all the profiles that have the leadAssignedTo and lastName
properties and that have the unomi value anywhere in their profile property values. You are also
specifying that you only want 10 results beginning at offset 0. The results will be also sorted in
alphabetical order for the lastName property value, and then by reverse alphabetical order for the
firstName property value.

As you can see, queries can be quite complex. Please remember that the more complex the more
resources it will consume on the server and potentially this could affect performance.

3.1.8. GETTING / UPDATING CONSENTS

You can find information on how to retrieve or create/update consents in the Consent API section.

3.1.9. HOW TO SEND A LOGIN EVENT TO UNOMI

Tracking logins must be done carefully with Unomi. A login event is considered a "privileged" event and
therefore for not be initiated from the public internet. Ideally user authentication should always be
validated by a trusted third- party even if it is a well-known social platform such as Facebook or Twitter.
Basically what should NEVER be done:

Apache Unomi 2.x - Documentation - 30

1. Login to a social platform

2. Call back to the originating page

3. Send a login event to Unomi from the page originating the login in step 1
The problem with this, is that any attacker could simply directly call step 3 without any kind of security.
Instead the flow should look something like this:

1. Login to a social platform

2. Call back to a special secured system that performs an server-to-server call to send the login event

to Apache Unomi using the Unomi key.

For simplicity reasons, in our login example, the first method is used, but it really should never be done
like this in production because of the aforementioned security issues. The second method, although a
little more involved, is much preferred.

When sending a login event, you can setup a rule that can check a profile property to see if profiles can
be merged on an universal identifier such as an email address.

In our login sample we provide an example of such a rule. You can find it here:

https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-INF/
cxs/rules/exampleLogin.json

As you can see in this rule, we call an action called :

mergeProfilesOnPropertyAction

with as a parameter value the name of the property on which to perform the merge (the email). What
this means is that upon successful login using an email, Unomi will look for other profiles that have the
same email and merge them into a single profile. Because of the merge, this should only be done for
authenticated profiles, otherwise this could be a security issue since it could be a way to load data from
other profiles by merging their data !

3.1.10. WHAT PROFILE ALIASES ARE AND HOW TO USE THEM

Profile aliases make it possible to reference profiles using multiple identifiers. The profile alias object
basically contains a link between the alias ID and the profile ID. The itemld of a profile alias is the actual
alias ID, which the profileID field contains the reference to the aliased profile.

WHAT THEY ARE

Apache Unomi 2.x - Documentation - 31

https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-INF/cxs/rules/exampleLogin.json
https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-INF/cxs/rules/exampleLogin.json

AliasID 1 AliasID 1

Profile
ID : String

Properties
Consents

Profile aliases:

¥ Make it possible to lookup profiles by main (Unomi) ID or by any other alias ID
¥ Aliases are just IDs stored in a dedicated index

¥ A profile may have an unlimited number of aliases attached to it.

HOW TO USE THEM

Mobile ID

Profile
- ID:5String

Unauth ID Auth ID

Profile
- |D:String

Here are different use cases for profile aliases:

¥ Connect different systems to Unomi such as a CRM, CMS and native mobile app that all have their
own iD for a single customer

Apache Unomi 2.x - Documentation - 32

¥ Merging profiles when a visitor is identified

¥ Adding new IDs at a later time

EXAMPLE

Here is an example of multiple external aliases pointing to a single Unomi profile

salesforce_johndoe1973 cmsNodeName_johndoe facebook_johndoe

Profile
- ID:"f72242d2-3145-43b1-8be7-d1d47cf4ad0e"
- Properties

- firstName: "John"

- lastName: "Doe"

INTERACTIONS WITH MERGING

Profile merges have been modified to use aliases starting Unomi 2

Upon merge:

¥ Properties are copied to the master profile as before
¥ An alias is created for the "master" profile with the ID of the merged profile
¥ Merged profiles are now deleted

¥ "mergedWith" property is no longer used since we deleted the merged profiles

API

/context.json and /eventcollector will now look up profiles by profile ID or aliases from the same cookie
(context-profile-id) or body parameters (profileld)

Verb Path Description
GET /cxs/profiles/PROFILE_ID_OR_ALI Retrieves a profile by ID or Alias
AS ID (useful if an external system

wants to get a profile)

GET /cxs/profiles/PROFILE_ID/aliases Get all the aliases for a profile
POST /cxs/profiles/PROFILE_ID/aliases/ Add an alias to a profile
ALIAS_ID

Apache Unomi 2.x - Documentation - 33

Verb Path Description

DELETE /cxs/profiles/PROFILE_ID/aliases/ Remove an alias from a profile
ALIAS ID

3.2. REQUEST EXAMPLES

3.2.1. RETRIEVING YOUR FIRST CONTEXT

You can retrieve a context using curl like this :
curl http://localhost:8181/cxs/context.js?sessionld=1234

This will retrieve a JavaScript script that contains a cxs object that contains the context with the current
user profile, segments, scores as well as functions that makes it easier to perform further requests (such
as collecting events using the cxs.collectEvents() function).

3.2.2. RETRIEVING A CONTEXT AS A JSON OBJECT.

If you prefer to retrieve a pure JSON object, you can simply use a request formed like this:

curl http://localhost:8181/cxs/context.json?sessionld=1234

3.2.3. ACCESSING PROFILE PROPERTIES IN A CONTEXT

By default, in order to optimize the amount of data sent over the network, Apache Unomi will not send
the content of the profile or session properties. If you need this data, you must send a JSON object to
configure the resulting output of the context.js(on) servlet.

Here is an example that will retrieve all the session and profile properties, as well as the profileOs
segments and scores

Apache Unomi 2.x - Documentation - 34

curl -X POST http://localhost:8181/cxs/context.json?sessionld=1234 \
-H "Content-Type: application/json™ \
-d @- <<'EOF'

"source": {
"itemld":"homepage",
"itemType":"page",
"scope":"example"
h
"requiredProfileProperties":["*"],
"requiredSessionProperties":["*"],
"requireSegments™:true,
"requireScores":true

M~ T M M M M b T e o

o
=

The requiredProfileProperties and requiredSessionProperties are properties that take an array of
property names that should be retrieved. In this case we use the wildcard character *' to say we want to
retrieve all the available properties. The structure of the JSON object that you should send is a JSON-
serialized version of the ContextRequest Java class.

3.2.4. SENDING EVENTS USING THE CONTEXT SERVLET

At the same time as you are retrieving the context, you can also directly send events in the
ContextRequest object as illustrated in the following example:

Apache Unomi 2.x - Documentation - 35

http://unomi.apache.org/unomi-api/apidocs/org/apache/unomi/api/ContextRequest.html

curl -X POST http://localhost:8181/cxs/context.json?sessionld=1234 \
-H "Content-Type: application/json™ \
-d @- <<'EOF'

"source"{
"itemld":"homepage",
"itemType":"page",
"scope":"example"

h

"events":[

{
"eventType":"view",
"scope": "example",
"source":{
"itemType": "site",
"scope":"example”,
"itemld": "mysite"
|3
"target”:{
"itemType":"page"”,
"scope":"example”,
"itemld":"homepage",
"properties":{
"pagelnfo":{
"referringURL":"https://apache.org/"
}

M = [[T M [T [T [T e T T T e > T T T T T M T M T M T m
—
—
—

o
e

Upon received events, Apache Unomi will execute all the rules that match the current context, and
return an updated context. This way of sending events is usually used upon first loading of a page. If you
want to send events after the page has finished loading you could either do a second call and get an
updating context, or if you donOt need the context and want to send events in a network optimal way you
can use the eventcollector servlet (see below).

3.2.5. SENDING EVENTS USING THE EVENTCOLLECTOR SERVLET

If you only need to send events without retrieving a context, you should use the eventcollector servlet
that is optimized respond quickly and minimize network traffic. Here is an example of using this servlet:

Apache Unomi 2.x - Documentation - 36

curl -X POST http://localhost:8181/cxs/eventcollector \

-H "Content-Type: application/json™ \
-d @- <<'EOF'

"sessionld" : "1234",
"events":[

{

"eventType":"view",

"scope": "example",

"source™:
"itemType": "site",

"scope":"example”,

"itemld": "mysite"

b

"target":{
"itemType":"page”,
"scope":"example”,
"itemld":"homepage”,
"properties™:{

"pagelnfo":{

}

m = [[T [T [T T T T T T T T > T M T M T M T m
—
'
'

©)
=

"referringURL":"https://apache.org/"

Note that the eventcollector executes the rules but does not return a context. If is generally used after a

page is loaded to send additional events.

3.2.6. WHERE TO GO FROM HERE

¥ You can find more useful Apache Unomi URLs

examples.

that can be used in the same way as the above

¥ Read the Twitter sample documentation that contains a detailed example of how to integrate with

Apache Unomi.

4. CONFIGURATION

4.1. CENTRALIZED CONFIGURATION

Apache Unomi uses a centralized configuration file that contains both system properties and
configuration properties. These settings are then fed to the OSGi and other configuration files using

placeholder that look something like this:

contextserver.publicAddress=${org.apache.unomi.cluster.public.address:-http://localhost:8181}
contextserver.internalAddress=${org.apache.unomi.cluster.internal.address:-https://localhost:9443}

Apache Unomi 2.x - Documentation - 37

Default values are stored in a file called $MY_KARAF_HOME/etc/custom.system.properties but you
should never modify this file directly, as an override mechanism is available. Simply create a file called:

unomi.custom.system.properties

and put your own property values in their to override the defaults OR you can use environment
variables to also override the values in the $MY_KARAF_HOME/etc/custom.system.properties . See the
next section for more information about that.

4.2. CHANGING THE DEFAULT CONFIGURATION USING
ENVIRONMENT VARIABLES (I.E. DOCKER CONFIGURATION)

You might want to use environment variables to change the default system configuration, especially if
you intend to run Apache Unomi inside a Docker container. You can find the list of all the environment
variable names in the following file:

https://github.com/apache/unomi/blob/master/package/src/main/resources/etc/custom.system.properties

If you are using Docker Container, simply pass the environment variables on the docker command line
or if you are using Docker Compose you can put the environment variables in the docker-compose.yml
file.

If you want to "save" the environment values in a file, you can use the bin/setenv(.bat) to setup the
environment variables you want to use.

4.3. CHANGING THE DEFAULT CONFIGURATION USING
PROPERTY FILES

If you want to change the default configuration using property files instead of environment variables,
you can perform any modification you want in the
$MY_KARAF_HOME/etc/unomi.custom.system.properties file.

By default this file does not exist and is designed to be a file that will contain only your custom
modifications to the default configuration.

For example, if you want to change the HTTP ports that the server is listening on, you will need to create
the following lines in the $MY_KARAF_HOME/etc/unomi.custom.system.properties (and create it if you
havenOt yet) file:

org.osgi.service.http.port.secure=9443
org.osgi.service.http.port=8181

If you change these ports, also make sure you adjust the following settings in the same file :

Apache Unomi 2.x - Documentation - 38

https://github.com/apache/unomi/blob/master/package/src/main/resources/etc/custom.system.properties

org.apache.unomi.cluster.public.address=http://localhost:8181
org.apache.unomi.cluster.internal.address=https://localhost:9443

If you need to specify an ElasticSearch cluster name, or a host and port that are different than the
default, it is recommended to do this BEFORE you start the server for the first time, or you will loose all
the data you have stored previously.

You can use the following properties for the ElasticSearch configuration

org.apache.unomi.elasticsearch.cluster.name=contextElasticSearch

The elasticsearch.adresses may be a comma seperated list of host names and ports such as
hostA:9200,hostB:9200

Note: the port number must be repeated for each host.
org.apache.unomi.elasticsearch.addresses=localhost:9200

4.4. SECURED EVENTS CONFIGURATION

Apache Unomi secures some events by default. It comes out of the box with a default configuration that
you can adjust by using the centralized configuration file override in
$MY_KARAF_HOME/etc/unomi.custom.system.properties

You can find the default configuration in the following file:

$MY_KARAF_HOME/etc/custom.system.properties

The properties start with the prefix : org.apache.unomi.thirdparty.* and here are the default values :

org.apache.unomi.thirdparty.providerl.key=${env:UNOMI_THIRDPARTY_PROVIDER1_KEY:-
670c26d1cc413346¢3b2fd9ce65dab41}
org.apache.unomi.thirdparty.providerl.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD
DRESSES:-127.0.0.1,::1}
org.apache.unomi.thirdparty.providerl.allowedEvents=${env:UNOMI_THIRDPARTY_PROVIDER1 A
LLOWEDEVENTS:-login,updateProperties}

The events set in allowedEvents will be secured and will only be accepted if the call comes from the
specified IP address, and if the secret-key is passed in the X-Unomi-Peer HTTP request header. The "env:"
part means that it will attempt to read an environment variable by that name, and if itOs not found it will
default to the value after the ":-" marker.

It is now also possible to use IP address ranges instead of having to list all valid IP addresses for event
sources. This is very useful when working in cluster deployments where servers may be added or
removed dynamically. In order to support this Apache Unomi uses a library called IPAddress that
supports IP ranges and subnets. Here is an example of how to setup a range:

Apache Unomi 2.x - Documentation - 39

https://seancfoley.github.io/IPAddress/#_Toc525135541

org.apache.unomi.thirdparty.providerl.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD
DRESSES:-192.168.1.1-100,::1}

The above configuration will allow a range of IP addresses between 192.168.1.1 and 192.168.1.100 as
well as the IPv6 loopback.

HereOs another example using the subnet format:

org.apache.unomi.thirdparty.providerl.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD
DRESSES:-1.2.0.0/16,::1}

The above configuration will allow all addresses starting with 1.2 as well as the IPv6 loopback address.

Wildcards may also be used:

org.apache.unomi.thirdparty.providerl.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD
DRESSES:-1.2.*.*,::1}

The above configuration is exactly the same as the previous one.

More advanced ranges and subnets can be used as well, please refer to the IPAddress library
documentation for details on how to format them.

If you want to add another provider you will need to add them manually in the following file (and make
sure you maintain the changes when upgrading) :

$MY_KARAF_HOME/etc/org.apache.unomi.thirdparty.cfg

Usually, login events, which operate on profiles and do merge on protected properties, must be secured.
For each trusted third party server, you need to add these 3 lines :

thirdparty.providerl.key=secret-key
thirdparty.providerl.ipAddresses=127.0.0.1,::1
thirdparty.providerl.allowedEvents=login,updateProperties

4.5. INSTALLING THE MAXMIND GEOIPLITEZ IP LOOKUP
DATABASE

Apache Unomi requires an IP database in order to resolve IP addresses to user location. The GeoLite2
database can be downloaded from MaxMind here : http://dev.maxmind.com/geoip/geoip2/geolite2/

Simply download the GeoLite2-City.mmdb file into the "etc" directory.

Apache Unomi 2.x - Documentation - 40

https://seancfoley.github.io/IPAddress
http://dev.maxmind.com/geoip/geoip2/geolite2/

4.6. INSTALLING GEONAMES DATABASE

Apache Unomi includes a geocoding service based on the geonames database (
http://www.geonames.org/). It can be used to create conditions on countries or cities.

In order to use it, you need to install the Geonames database into . Get the "allCountries.zip" database
from here : http://download.geonames.org/export/dump/

Download it and put it in the ‘“etc"
$MY_KARAF_HOME/etc/unomi.custom.system.properties and set
org.apache.unomi.geonames.forcelmport to true, import should start right away. Otherwise, import
should start at the next startup. Import runs in background, but can take about 15 minutes. At the end,

you should have about 4 million entries in the geonames index.

directory, without unzipping it. Edit

4.7. REST API SECURITY

The Apache Unomi Context Server REST API is protected using JAAS authentication and using Basic or
Digest HTTP auth. By default, the login/password for the REST API full administrative access is
"karaf/karaf".

The generated package is also configured with a default SSL certificate. You can change it by following
these steps :

Replace the existing keystore in $MY_KARAF_HOME/etc/keystore by your own certificate :
http://wiki.eclipse.org/Jetty/Howto/Configure_ SSL

Update the keystore and certificate password in
$MY_KARAF_HOME/etc/unomi.custom.system.properties file :

org.ops4j.pax.web.ssl.keystore=${env:UNOMI_SSL_KEYSTORE:-${karaf.etc}/keystore}
org.ops4j.pax.web.ssl.password=${env:UNOMI_SSL_PASSWORD:-changeme}
org.ops4j.pax.web.ssl.keypassword=${env:UNOMI_SSL_KEYPASSWORD:-changeme}

You should now have SSL setup on Karaf with your certificate, and you can test it by trying to access it
on port 9443.

Changing the default Karaf password can be done by modifying the
org.apache.unomi.security.root.password in the
$MY_KARAF_HOME/etc/unomi.custom.system.properties file

4.8. SCRIPTING SECURITY

4.8.1. MULTI-LAYER SCRIPTING FILTERING SYSTEM

The scripting security system is multi-layered.

Apache Unomi 2.x - Documentation - 41

http://www.geonames.org/
http://download.geonames.org/export/dump/
http://wiki.eclipse.org/Jetty/Howto/Configure_SSL

For requests coming in through the /cxs/context.json endpoint, the following flow is used to secure

‘

Condition sanitizing

l

Expression filtering

v
Scripting Engine

incoming requests:

Filtering Class Loader

Conditions submitted through the context.json public endpoint are first sanitized, meaning that any
scripting directly injected is removed. However, as conditions can use sub conditions that include
scripting, only the first directly injected layer of scripts are removed.

The second layer is the expression filtering system, that uses an allow-listing mechanism to only accept
pre-vetted expressions (through configuration and deployment on the server side). Any unrecognized

expression will not be accepted.

Finally, once the script starts executing in the scripting engine, a filtering class loader will only let the
script access classes that have been allowed.

This multi-layered approach makes it possible to retain a high level of security even if one layer is poorly
configured or abused.

For requests coming in through the secure APIs such as rules, only the condition sanitizing step is
skipped, otherwise the rest of the filtering system is the same.

4.8.2. SCRIPTS AND EXPRESSIONS

Apache Unomi allows using different types of expressions in the following subsystems:

Apache Unomi 2.x - Documentation - 42

¥ context.json filters and personalization queries

¥ rule conditions and actions parameters

Apache Unomi uses two integrated scripting languages to provide this functionality: OGNL and MVEL.
OGNL is deprecated and is now disabled by default since 1.5.2 as it is little used (and replaced by better

performing hardcoded property lookups). MVEL is more commonly used in rule actions as in the

following example:

From https://github.com/apache/unomi/blob/unomi-1.5.x/plugins/baseplugin/src/main/resources/META-

INF/cxs/rules/sessionAssigned.json

"metadata": {
"id": "_ajhg9u2s5_sessi

"readOnly":true

12

™ m» My M e mp

"condition™: {

"parameterValues": {
"subConditions":[

{

"parameterValues":
"eventTypeld": "se
}
b
{

"parameterValues":
"eventTypeld": "se
}
}

[T T T e M e T e T T T T T T T Th

1,

"operator":"or"

> Th

}
}

> mp

"actions": [

{

"parameterValues": {

"setPropertyValue": "

12
2
{

"parameterValues": {

[T T [T [Tp [T TP T T TP [T TP [Th

onAssigned"”,

"name": "Session assigned to a profile",
"description": "Update profile visit information"”,

"type": "booleanCondition",

"type": "eventTypeCondition",

{

ssionCreated"

"type": "eventTypeCondition",

{

ssionReassigned"

"setPropertyName": "properties.previousVisit",

profileProperty::lastVisit",

"storelnSession": false

"type": "setPropertyAction”

"setPropertyName": "properties.lastVisit",

Apache Unomi 2.x - Documentation - 43

https://github.com/apache/unomi/blob/unomi-1.5.x/plugins/baseplugin/src/main/resources/META-INF/cxs/rules/sessionAssigned.json
https://github.com/apache/unomi/blob/unomi-1.5.x/plugins/baseplugin/src/main/resources/META-INF/cxs/rules/sessionAssigned.json

"setPropertyValue": "now",
"storelnSession": false
h
"type": "setPropertyAction”
h
{
"parameterValues": {
"setPropertyName": "properties.nbOfVisits",
"setPropertyValue": "script::profile.properties.?nbOfVisits != null ? (profile.properties.nbOfVisits
1): 17,
"storelnSession": false
i
"type": "setPropertyAction”
}
]

N N i e N N e e e e e e

—

As we see in the above example, we use an MVEL script with the setPropertyAction to set a property
value. Starting with version 1.5.2, any expression use in rules MUST be allow-listed.

OGNL was previously used wherever a parameter could be used, but MVEL could only be used with a
Oscript::O prefix. Starting with version 1.5.2 OGNL will no longer be allowed and is replaced by a
compatible OhardcodedO property lookup system, while MVEL requires allow-listing the scripts that are

to be used.

By default, Apache Unomi comes with some built-in allowed expressions that cover all the internal uses
cases.

Default allowed MVEL expressions (from https://github.com/apache/unomi/blob/unomi-
1.5.x/plugins/baseplugin/src/main/resources/META-INF/cxs/expressions/mvel.json):

"\\Q'systemProperties.goals.'+goalld+TargetReached\\E",
"WQ'now-'+since+'d\\E",

"\\Q'scores.'+scoringPlanld\\E",

"WQminimumDuration*1000\\E",

E "\QmaximumDuration*1000\\E",

E "\Qprofile.properties.?nbOfVisits != null ? (profile.properties.nbOfVisits + 1) : 1\\E",
E "\Qsession != null ? session.size + 1 : O\E",

E "\Q'properties.optimizationTest_'+event.target.itemId\E",

E "\Qevent.target.properties.variantld\E",

E "\Qprofile.properties.?systemProperties.goals.\E\\WwW_]J*\QReached != null ?
(profile.properties.systemProperties.goals. \E[\W_]*\\QReached) : 'now\\E",

E "\Qprofile.properties.?systemProperties.campaigns.\E\\wW_J*\QEngaged != null ?
(profile.properties.systemProperties.campaigns.\E[\W_J*\\QEngaged) : 'now"\\E"

]

> mp e mp=

If you require or are already using custom expressions, you should add a plugin to Apache Unomi to
allow for this. The choice of a plugin was to make sure only system administrators and solution
developers could provide such a list, avoiding the possibility to provide it through an API call or another
security sensitive deployment mechanism.

Apache Unomi 2.x - Documentation - 44

https://github.com/apache/unomi/blob/unomi-1.5.x/plugins/baseplugin/src/main/resources/META-INF/cxs/expressions/mvel.json
https://github.com/apache/unomi/blob/unomi-1.5.x/plugins/baseplugin/src/main/resources/META-INF/cxs/expressions/mvel.json

There is another way of allow-listing expressions through configuration, see the Oscripting configuration
parametersO section below.

Procedure to add allowed expressions:

1. Create a new Apache Unomi plugin project.

2. Create a JSON file in src/main/resources/META-INF/cxs/expressions/mvel.json with an array of
regular expressions that will contain the allowed expressions.

3. Build the project and deploy it to Apache Unomi

Warning: Do not make regular expressions too general. They should actually be as specific as possible to
avoid potential injection of malicious code.

4.8.3. SCRIPTING EXPRESSION FILTERING CONFIGURATION PARAMETERS

Alongside with the allow-listing technology, there are new configuration parameters to control the
security of the scripting engines:

Apache Unomi 2.x - Documentation - 45

These parameters control the list of classes that are allowed or forbidden when executing
expressions.

org.apache.unomi.scripting.allow=${env:UNOMI_ALLOW_SCRIPTING_CLASSES:-
org.apache.unomi.api.Event,org.apache.unomi.api.Profile,org.apache.unomi.api.Session,org.apache
.unomi.api.ltem,org.apache.unomi.api.Customitem,ognl.* java.lang.Object,java.util. Map,java.util.Ha
shMap,java.lang.Integer,org.mvel2.*}
org.apache.unomi.scripting.forbid=${env:UNOMI_FORBID_SCRIPTING_CLASSES:-}

This parameter controls the whole expression filtering system. It is not recommended to turn it
off. The main reason to turn it off would be to check if it is interfering with something, but it should
always be active in production.
org.apache.unomi.scripting.filter.activated=${env:UNOMI_SCRIPTING_FILTER_ACTIVATED:-true}

The following parameters control the filtering using regular expressions for each scripting sub-
system.

The "collections" parameter tells the expression filtering system which configurations to expect. By
default only MVEL and/or OGNL are accepted values, but in the future these might be replaced by
new scripting sub-systems.
org.apache.unomi.scripting.filter.collections=${env:UNOMI_SCRIPTING_FILTER_COLLECTIONS:-
mvel,ognl}

For each scripting sub-system, there is an allow and a forbid property that reference a .json files,
you can either edit this files or reference your own file directly in the following config.

Note: You can add new expressions to the "allow" file, although it is better to add them inside any
plugins you may be adding.

This configuration is only designed to compensate for the cases where something was not
properly designed or to deal with compatibility issues.

Just be VERY careful to make your patterns AS SPECIFIC AS POSSIBLE in order to avoid
introducing a way to abuse the expression filtering.

Note: It is NOT recommended to change the built-in "forbid" value unless you are having issues
with its value.

Note: mvel-allow.json contains an empty array: [], this mean nothing is allowed, so far.

If you want to allow all expression, just remove the property
org.apache.unomi.scripting.filter.mvel.allow, but this is not recommended

It's better to list your expressions, and provide them in the mvel-allow.json file

example: ["\\Qsession.size + 1\\E"]
org.apache.unomi.scripting.filter.mvel.allow=%${env:UNOMI_SCRIPTING_FILTER_MVEL_ALLOW:-
${karaf.etc}/mvel-allow.json}
org.apache.unomi.scripting.filter.mvel.forbid=${env:UNOMI_SCRIPTING_FILTER_MVEL_FORBID:-
${karaf.etc}/mvel-forbid.json}
org.apache.unomi.scripting.filter.ognl.allow=${env:UNOMI_SCRIPTING_FILTER_OGNL_ALLOW:-
${karaf.etc}/ognl-allow.json}
org.apache.unomi.scripting.filter.ognl.forbid=${env:UNOMI_SCRIPTING_FILTER_OGNL_FORBID:-
${karaf.etc}/ognl-forbid.json}

This parameter controls whether OGNL scripting is allowed in expressions. Because of security
reasons it is deactivated by default. If you run into compatibility issues you could reactivate it but it

is at your own risk.
org.apache.unomi.security.properties.useOGNLScripting=${env:UNOMI_SCRIPTING_USE_OGNL:-
false}

This parameter controls the condition sanitizing done on the ContextServlet (/cxs/context.json). If
will remove any expressions that start with "script::". It is not recommended to change this value,
unless you run into compatibility issues.
org.apache.unomi.security.personalization.sanitizeConditions=${env:UNOMI_SECURITY_SANITIZEP
ERSONALIZATIONCONDITIONS:-true}

Apache Unomi 2.x - Documentation - 46

4.8.4. GROOVY ACTIONS

Groovy actions offer the ability to define a set of actions and action types (aka action descriptors) purely
from Groovy scripts defined at runtime.

Initially submitted to Unomi through a purpose-built REST API endpoint, Groovy actions are then stored
in Elasticsearch. When an event matches a rule configured to execute an action, the corresponding
action is fetched from Elasticsearch and executed.

ANATOMY OF A GROOVY ACTION
To be valid, a Groovy action must follow a particular convention which is divided in two parts:

¥ An annotation used to define the associated action type

¥ The function to be executed

Placed right before the function, the O@ActionO annotation contains a set of parameter detailing how the
action should be triggered.

Table 1. @Action annotation

Field name Type Required Description
id String YES Id of the action
actionExecutor String YES Action executor contains

the name of the script to
call for the action type
and must be prefixed
with Ogroovy: O. The
prefix indicates to
Unomi which dispatcher
to use when processing

the action.
name String Action name
hidden Boolean Define if the action is

hidden or not. It is
usually used to hide
objects in a Ul.

parameters List< Parameter > The parameters of the
actions, also defined by
annotations

Apache Unomi 2.x - Documentation - 47

https://github.com/apache/unomi/blob/master/extensions/groovy-actions/services/src/main/java/org/apache/unomi/groovy/actions/annotations/Parameter.java

Field name Type Required Description

systemTags List<String> A (reserved) list of tags
for the associated object.
This is usually populated
through JSON
descriptors and is not
meant to be modified by
end users. These tags
may include values that
help classify associated
objects.

The function contained within the Groovy Action must be called execute() and its last instruction must
be an integer.

This integer serves as an indication whether the values of the session and profile should be persisted. In
general, the codes used are defined in the EventService interface

Each groovy actions extends by default a Base script defined here
REST API
Actions can be deployed/updated/deleted via the dedicated /cxs/groovyActions rest endpoint.

Deploy/update an Action:

curl -X POST 'http://localhost:8181/cxs/groovyActions' \
--user karaf:karaf \
--form 'file=@"<file location>"

A Groovy Action can be updated by submitting another Action with the same id.

Delete an Action:

curl -X DELETE 'http://localhost:8181/cxs/groovyActions/<Action id>"\
--user karaf:karaf

Note that when a groovy action is deleted by the API, the action type associated with this action will also
be deleted.

HELLO WORLD!

In this short example, weOre going to create a Groovy Action that will be adding OHello world!O to the logs
whenever a new view event is triggered.

The first step consists in creating the groovy script on your filesystem, start by creating the file hello-

Apache Unomi 2.x - Documentation - 48

https://github.com/apache/unomi/blob/master/api/src/main/java/org/apache/unomi/api/services/EventService.java
https://github.com/apache/unomi/blob/master/extensions/groovy-actions/services/src/main/resources/META-INF/base/BaseScript.groovy

world.groovy :

@Action(id = "helloWorldGroovyAction",

E actionExecutor = "groovy:helloWorldAction”,

E parameters = [@Parameter(id = "location”, type = "string", multivalued = false)])
def execute() {

E logger.info("Hello {}", action.getParameterValues().get("location"))

E EventService.NO_CHANGE

}

As the last instruction of the scriptis ~ EventService.NO_CHANGE, data will not be persisted.

Once the action has been created you need to submit it to Unomi (from the same folder as hello-
world.groovy).

curl -X POST 'http://localhost:8181/cxs/groovyActions' \
--user karaf:karaf \
--form ‘file=@hello-world.groovy’

Finally, register a rule to trigger execution of the groovy action:

curl -X POST 'http://localhost:8181/cxs/rules' \

--user karaf:karaf \

--header 'Content-Type: application/json' \

--data-raw {

E"metadata": {

= "id": "scriptGroovyActionRule",

"name": "Test Groovy Action Rule",

"description”: "A sample rule to test Groovy actions"

}

"condition": {

"type": "eventTypeCondition",

"parameterValues": {
"eventTypeld": "view"

}

h

"actions™: [

{

"parameterValues": {
"location”: "world!"
j#
"type": "helloWorldGroovyAction”

T M [T mp [mp |'|j> [T ™ [T [T Tp [T T [T TP [T

E}
El
y

Note that this rule contains a OlocationO parameter, with the value Oworld!O, which is then used in the log
message triggered by the action.

You can now use unomi to trigger a OviewO event and see the corresponding message in the Unomi logs.

Apache Unomi 2.x - Documentation - 49

Once youQre done with the Hello World! action, it can be deleted using the following command:

curl -X DELETE 'http://localhost:8181/cxs/groovyActions/helloWorldGroovyAction' \
--user karaf:karaf

And the corresponding rule can be deleted using the following command:

curl -X DELETE 'http://localhost:8181/cxs/rules/scriptGroovyActionRule’ \
--user karaf:karaf

4.8.5. SCRIPTING ROADMAP

Scripting will probably undergo major changes in future versions of Apache Unomi, with the likely
retirement of MVEL in favor of Groovy Actions detailed above.

These changes will not happen on maintenance versions of Apache Unomi, only in the next major
version. Maintenance versions will of course maintain compatibility with existing scripting solutions.

4.9. AUTOMATIC PROFILE MERGING

Apache Unomi is capable of merging profiles based on a common property value. In order to use this,
you must add the MergeProfileOnPropertyAction to a rule (such as a login rule for example), and
configure it with the name of the property that will be used to identify the profiles to be merged. An
example could be the "email" property, meaning that if two (or more) profiles are found to have the
same value for the "email" property they will be merged by this action.

Upon merge, the old profiles are marked with a "mergedWith" property that will be used on next profile
access to delete the original profile and replace it with the merged profile (aka "master" profile). Once

this is done, all cookie tracking will use the merged profile.

To test, simply configure the action in the "login" or "facebookLogin" rules and set it up on the "email”
property. Upon sending one of the events, all matching profiles will be merged.

4.10. SECURING A PRODUCTION ENVIRONMENT

Before going live with a project, you should absolutely read the following section that will help you setup
a proper secure environment for running your context server.

Step 1: Install and configure a firewall
You should setup a firewall around your cluster of context servers and/or Elasticsearch nodes. If you
have an application-level firewall you should only allow the following connections open to the whole

world :

¥ http://localhost:8181/cxs/context.js

Apache Unomi 2.x - Documentation - 50

http://localhost:8181/cxs/context.js

¥ http://localhost:8181/cxs/eventcollector
All other ports should not be accessible to the world.

For your Apache Unomi client applications (such as the Jahia CMS), you will need to make the following
ports accessible :

8181 (Context Server HTTP port)
9443 (Context Server HTTPS port)

The Apache Unomi actually requires HTTP Basic Auth for access to the Context Server administration
REST API, so it is highly recommended that you design your client applications to use the HTTPS port for
accessing the REST API.

The user accounts to access the REST API are actually routed through KarafOs JAAS support, which you
may find the documentation for here :

¥ http://karaf.apache.org/manual/latest/users-guide/security.html

The default username/password is

karaf/karaf

You should really change this default username/password as soon as possible. Changing the default
Karaf password can be done by modifying the org.apache.unomi.security.root.password in the
$MY_KARAF_HOME/etc/unomi.custom.system.properties file

Or if you want to also change the user name you could modify the following file :

$MY_KARAF_HOME/etc/users.properties

But you will also need to change the following property in the
$MY_KARAF_HOME/etc/unomi.custom.system.properties :

karaf.local.user = karaf

For your context servers, and for any standalone Elasticsearch nodes you will need to open the following
ports for proper node-to-node communication : 9200 (Elasticsearch REST API), 9300 (Elasticsearch TCP
transport)

Of course any ports listed here are the default ports configured in each server, you may adjust them if
needed.

Step 2 : Follow industry recommended best practices for securing Elasticsearch

Apache Unomi 2.x - Documentation - 51

http://localhost:8181/cxs/eventcollector
http://karaf.apache.org/manual/latest/users-guide/security.html

You may find more valuable recommendations here :

¥ https://lwww.elastic.co/blog/found-elasticsearch-security

¥ https://www.elastic.co/blog/scripting-security
Step 4 : Setup a proxy in front of the context server

As an alternative to an application-level firewall, you could also route all traffic to the context server
through a proxy, and use it to filter any communication.

4.11. INTEGRATING WITH AN APACHE HTTP WEB SERVER

If you want to setup an Apache HTTP web server in from of Apache Unomi, here is an example
configuration using mod_proxy.

In your Unomi package directory, in $MY_KARAF_HOME/etc/unomi.custom.system.properties setup the
public address for the hostname unomi.apache.org :

org.apache.unomi.cluster.public.address=https://unomi.apache.org/
org.apache.unomi.cluster.internal.address=http://192.168.1.1:8181

and you will also need to change the cookie domain in the same file:
org.apache.unomi.profile.cookie.domain=apache.org

Main virtual host config:

Apache Unomi 2.x - Documentation - 52

https://www.elastic.co/blog/found-elasticsearch-security
https://www.elastic.co/blog/scripting-security

<VirtualHost *:80>
E Include /var/www/vhosts/unomi.apache.org/conf/common.conf
</VirtualHost>

<IfModule mod_ssl.c>

E <VirtualHost *:443>

E Include /var/www/vhosts/unomi.apache.org/conf/common.conf

E SSLEngine on

E SSL CertificateFile /var/www/vhosts/unomi.apache.org/conf/ssl/24d5b9691e96eafa.crt
E SSL CertificateKeyFile /var/www/vhosts/unomi.apache.org/conf/ssl/apache.org.key

E SSL CertificateChainFile /var/www/vhosts/unomi.apache.org/conf/ssl/gd_bundle-g2-g1.crt
E <FilesMatch "\.(cgi|shtml|phtml|php)$">

E SSLOptions +StdEnvVars

E </FilesMatch>

E <Directory /ust/lib/cgi-bin>

E SSLOptions +StdEnvVars

E </Directory>

E BrowserMatch "MSIE [2-6]" \

E nokeepalive ssl-unclean-shutdown \

E downgrade-1.0 force-response-1.0

E BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

E </VirtualHost>
</IfModule>

common.conf:

Apache Unomi 2.x - Documentation - 53

ServerName unomi.apache.org
ServerAdmin webmaster@apache.org

DocumentRoot /var/www/vhosts/unomi.apache.org/html
CustomLog /var/log/apache2/access-unomi.apache.org.log combined
<Directory />

E Options FollowSymLinks

E AllowOverride None

</Directory>

<Directory /var/www/vhosts/unomi.apache.org/html>
Options FollowSymLinks MultiViews
AllowOverride None

Order allow,deny

allow from all

</Directory>

<Location /cxs>

Order deny,allow

deny from all

allow from 88.198.26.2

allow from www.apache.org

</Location>

T mp me mp

™ mp e mp

RewriteEngine On

RewriteCond %{REQUEST_METHOD} /TRACE|TRACK)
RewriteRule .* - [F]

ProxyPreserveHost On

ProxyPass /server-status !

ProxyPass /robots.txt !

RewriteCond %{HTTP_USER_AGENT} Googlebot [OR]
RewriteCond %{HTTP_USER_AGENT} msnbot [OR]
RewriteCond %{HTTP_USER_AGENT} Slurp
RewriteRule ~.* - [F,L]

ProxyPass / http://localhost:8181/ connectiontimeout=20 timeout=300 ttl=120
ProxyPassReverse / http://localhost:8181/

4.12. CHANGING THE DEFAULT TRACKING LOCATION

When performing localhost requests to Apache Unomi, a default location will be used to insert values
into the session to make the location-based personalization still work. You can modify the default
location settings using the centralized configuration file
($MY_KARAF_HOME/etc/unomi.custom.system.properties).

Here are the default values for the location settings :

Apache Unomi 2.x - Documentation - 54

The following settings represent the default position that is used for localhost requests
org.apache.unomi.ip.database.location=${env:UNOMI_IP_DB:-${karaf.etc}/GeoLite2-City.mmdb}
org.apache.unomi.ip.default.countryCode=${env:UNOMI_IP_DEFAULT_COUNTRYCODE:-CH}
org.apache.unomi.ip.default.countryName=${env:UNOMI_IP_DEFAULT_COUNTRYNAME:-
Switzerland}

org.apache.unomi.ip.default.city=${env:UNOMI_IP_DEFAULT_CITY:-Geneva}
org.apache.unomi.ip.default.subdivi=${env:UNOMI_IP_DEFAULT_SUBDIV1:-2660645}
org.apache.unomi.ip.default.subdiv2=${env:UNOMI_IP_DEFAULT_SUBDIV2:-6458783}
org.apache.unomi.ip.default.isp=${env:UNOMI_IP_DEFAULT_ISP:-Cablecom}
org.apache.unomi.ip.default.latitude=${env:UNOMI_IP_DEFAULT_LATITUDE:-46.1884341}
org.apache.unomi.ip.default.longitude=${env:UNOMI_IP_DEFAULT_LONGITUDE:-6.1282508}

You might want to change these for testing or for demonstration purposes.

4.13. APACHE KARAF SSH CONSOLE

The Apache Karaf SSH console is available inside Apache Unomi, but the port has been changed from the
default value of 8101 to 8102 to avoid conflicts with other Karaf-based products. So to connect to the SSH
console you should use:

ssh -p 8102 karaf@localhost

or the user/password you have setup to protect the system if you have changed it. You can find the list of
Apache Unomi shell commands in the "Shell commands" section of the documentation.

4.14. ELASTICSEARCH AUTHENTICATION AND SECURITY

With ElasticSearch 7, itOs possible to secure the access to your data. (see
https://lwww.elastic.co/guide/en/elasticsearch/reference/7.17/configuring-stack-security.htmi and
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/secure-cluster.html)

4.14.1. USER AUTHENTICATION !

If your ElasticSearch have been configured to be only accessible by authenticated users, edit
etc/org.apache.unomi.persistence.elasticsearch.cfg ~ to add the following settings:

username=USER
password=PASSWORD

4.14.2. SSL COMMUNICATION

By default Unomi will communicate with ElasticSearch using http but you can configure your
ElasticSearch server(s) to allow encrypted request using https .

You can follow this documentation to enable SSL on your ElasticSearch server(s):
https://lwww.elastic.co/guide/en/elasticsearch/reference/7.17/security-basic-setup-https.html

Apache Unomi 2.x - Documentation - 55

https://www.elastic.co/guide/en/elasticsearch/reference/7.17/configuring-stack-security.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/secure-cluster.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/security-basic-setup-https.html

If your ElasticSearch is correctly configure to encrypt communications on https :

Just edit etc/org.apache.unomi.persistence.elasticsearch.cfg to add the following settings:
sslEnable=true

By default, certificates will have to be configured on the Apache Unomi server to be able to trust the
identity of the ElasticSearch server(s). But if you need to trust all certificates automatically, you can use
this setting:

sslTrustAllCertificates=true

4.14.3. PERMISSIONS

Apache Unomi requires a particular set of Elasticsearch permissions for its operation.

If you are using Elasticsearch in a production environment, you will most likely need to fine tune
permissions given to the user used by Unomi.

The following permissions are required by Unomi:

¥ required cluster privileges: manage ORall

¥ required index privileges on unomi indices: write, manage, read ORall

5. JSON SCHEMAS

5.1. INTRODUCTION

Introduced with Apache Unomi 2.0, JSON-Schema are used to validate data submitted through all of the
public (unprotected) APl endpoints.

5.1.1. WHAT IS A JSON SCHEMA

JSON Schemais a powerful standard for validating the structure of JSON data. Described as a JSON
object, a JSON schema file contains format, types, patterns, and more. Used against JSON data, a JSON
schema validates that the data is compatible with the specified schema.

Example of a basic JSON schema that validates that the path property is a string property:

Apache Unomi 2.x - Documentation - 56

https://json-schema.org/specification.html

"$id":"https://unomi.apache.org/schemas/json/example/1-0-0",
"$schema":"https://json-schema.org/draft/2019-09/schema”,
"title":"Example of a basic schema",
"type":"object",
"properties":{
"path":{
"type":"string",
"$comment":"Example of a property."
}
}

== [T [Tb T [Tb [T [Tb [T [T [Th T~

"path": "example/of/path” //Is valid

—~ mp—

"path": 100 // Is not valid

~ m—

Apache Unomi is using json-schema-validator to integrate JSON schema. The library and its source code

is available at: https://github.com/networknt/json-schema-validator , you can refer to the featureOs
pom.xml available at json-schema/service/pom.xml to identify which version of the library is currently
integrated.

You can discover and play with JSON schema using online tools such as JSON Schema Validator . Such
tools allow you to validate a schema against JSON data (such as the example above), and can point to

particular errors. More details about JSON schema are available on the official specificationOs website:
https://json-schema.org/specification.html

5.1.2. KEY CONCEPTS

This section details concepts that are important to understand in order to use JSON schema validation
with Apache Unomi.

$ID KEYWORD

The $id keyword:

Each schema in Apache Unomi should have a $id, the $id value is an URI which will be used to retrieve
the schema and must be unique.

Example:

Apache Unomi 2.x - Documentation - 57

https://github.com/networknt/json-schema-validator
https://github.com/apache/unomi/blob/master/extensions/json-schema/services/pom.xml#L35
https://www.jsonschemavalidator.net/
https://json-schema.org/specification.html

{

E "$id":"https://unomi.apache.org/schemas/json/example/1-0-0"

}

$REF KEYWORD

The $ref keyword allows you to reference another JSON schema by its $id keyword. 1tOs possible to
separate complex structures or repetitive parts of schema into other small files and use $ref to include
them into several json schemas.

Example with a person and an address:

"$id": "https://example.com/schemas/address",
"type": "object",
"properties": {
"street_address": { "type": "string" },
"city": { "type": "string" },
"state": { "type": "string" }
}

== [Tb [Tb T [Th [[Th M~

"type": "object”,
"properties": {
"first_name™:{ "type": "string" },
"last_name": { "type": "string" },
"shipping_address": {
"$ref": "https://example.com/schemas/address"
I
"billing_address": {
"$ref"; "https://example.com/schemas/address"

}
}

S~ [T [T> T M > M T M T M M

More details about $ref can be found in the specifications: https://json-schema.org/understanding-json-
schema/structuring.html#ref

ALLOF KEYWORD

The allOf keyword is an array of fields which allows schema composition. The data will be valid against
a schema if the data are valid against all of the given subschemas in the allOf part and are valid against
the properties defined in the schema.

Apache Unomi 2.x - Documentation - 58

https://json-schema.org/understanding-json-schema/structuring.html#ref
https://json-schema.org/understanding-json-schema/structuring.html#ref

"$id": "https://unomi.apache.org/schemas/json/example/1-0-0",
"$schema": "https://json-schema.org/draft/2019-09/schema”,

"type": "object",
"allof": [
{

"type": "object",
"properties": {
"fromAIlOf": {
"type": "integer",
"$comment": "Example of allOf."
}
}
}
Il
"properties": {
"myProperty": {
"type™: "string",
"$comment": "Example of a property."

}
}

~ Tp T > > M M M T T T e M M M T e me me mp mp e

Valid JSON:

{
E "myProperty": "My property",
E "fromAllOf' : 10
}
Invalid JSON:
{A
E "myProperty": "My property",
E "fromAllOf" : "My value"
}

ItOs also possible to use a reference $ref in the allOf keyword to reference another schema.

In Unomi, there is an example of using $ref in the allOf keyword to validate the properties which are
defined in the event schema. This schema contains properties common to all events. 1tOs done in the the
view event schema. The file can be found on github: view.json More details about allOf can be found in
the specifications: https://json-schema.org/understanding-json-schema/reference/combining.html#allof

UNEVALUATEDPROPERTIES KEYWORD

The unevaluatedProperties keyword is useful for schema composition as well as enforcing stricter
schemas. This keyword is similar to additionalProperties except that it can recognize properties
declared in sub schemas. When setting the unevaluatedProperties value to false , the properties which

Apache Unomi 2.x - Documentation - 59

https://github.com/apache/unomi/blob/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas/events/view/view.json#L13
https://json-schema.org/understanding-json-schema/reference/combining.html#allof

are not present in the properties part and are not present in the sub schemas will be considered as
invalid.

Example with the following schema:

{
E "$id™ "https://Junomi.apache.org/schemas/json/example/1-0-0",
E "$schema': "https://json-schema.org/draft/2019-09/schema”,
E "type": "object",
E "allof": [
E |
E "$ref"; "https://unomi.apache.org/schemas/json/subschema/1-0-0"
E 1}
E 1
E "properties": {
E "myProperty": {
E "type": "string",
E "$comment": "Example of a property."
E 1}
E }
E "unevaluatedProperties": false
}
Sub schema:
{A
E "$id": "https://lunomi.apache.org/schemas/json/subschema/1-0-0",
E "$schema': "https://json-schema.org/draft/2019-09/schema”,
E "type": "object",
E “properties": {
E "fromAllOf" {
E "type": "string",
E "$comment": "Example of allOf."
E 1}
E }
}
With the following data, the validation will fail because the property myNewProperty is not defined

neither the properties part nor the allOf part.

"myProperty": "My property",
"fromAllOf" : 10,
"myNewProperty": "another one" //Not valid

=~ T m m~—

5.1.3. HOW ARE JSON SCHEMA USED IN UNOMI

JSON Schema is used in Unomi to validate the data coming from the two public endpoints
/contextRequest and /eventCollector . Both endpoints have a custom deserializer which will begin by

Apache Unomi 2.x - Documentation - 60

validating the payload of the request, then will filter invalid events present in this payload. If an event is
not valid it will not be processed by the system. The internal events are not validated by JSON schema as
they are not sent through the public endpoints.

In Unomi, each event type must have an associated JSON schema. To validate an event, Unomi will
search for a schema in which the target of the schema is events , and with the name of the schema
matching the event type.

A custom keyword named self has to be present in the JSON schemas to store the information related to
each schema. The following example is the self part of the view event JSON schema. Having the target
set to events and the name setto view , this schema will be used to validate the events of type view .

E

"self":{

E "vendor":"org.apache.unomi",
E “target": "events",

E "name": "view",

E “format":"jsonschema",

E "version":"1-0-0"

},’

E

Link to the schema on github: view.json .

A set of predefined schema are present in Unomi, these schemas can be found under the folder :
extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas

These schemas will be loaded in memory at startup. Each schema where the target value is set to
events , will be used to validate events. The others are simply used as part of JSON schema or can be
used in additional JSON schemas.

ItOs possible to add JSON schemas to validate your own event by using the API, the explanations to
manage JSON schema through the API are in the Create / update a JSON schema to validate an event
section.

Contrary to the predefined schemas, the schemas added through the API will be persisted in
Elasticsearch in the jsonSchema index. Schemas persisted in Elasticsearch do not require a restart of the

platform to reflect changes.

Process of creation of schemas:

X Bl T
Admin Authenticated
n user Sta
redefinec

Apache Unomi 2.x - Documentation - 61

https://github.com/apache/unomi/blob/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas/events/view/view.json
https://github.com/apache/unomi/tree/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas

5.2. JSON SCHEMA API

The JSON schema endpoints are private, so the user has to be authenticated to manage the JSON schema
in Unomi.

5.2.1. LIST EXISTING SCHEMAS

The REST endpoint GET {{url}}/cxs/jsonSchema allows to get all ids of available schemas and
subschemas.

List of predefined schemas:

"https://lunomi.apache.org/schemas/json/events/modifyConsent/properties/1-0-0",
"https://lunomi.apache.org/schemas/json/item/1-0-0",
"https://lunomi.apache.org/schemas/json/events/login/1-0-0",
"https://lunomi.apache.org/schemas/json/events/modifyConsent/1-0-0",
"https://lunomi.apache.org/schemas/json/consentType/1-0-0",
"https://lunomi.apache.org/schemas/json/items/page/properties/1-0-0",
"https://lunomi.apache.org/schemas/json/items/page/properties/attributes/1-0-0",
"https://lunomi.apache.org/schemas/json/events/incrementinterest/1-0-0",
"https://lunomi.apache.org/schemas/json/events/view/flattenProperties/1-0-0",
"https://lunomi.apache.org/schemas/json/interests/1-0-0",
"https://lunomi.apache.org/schemas/json/items/site/1-0-0",
"https://lunomi.apache.org/schemas/json/items/page/properties/pagelnfo/1-0-0",
"https://lunomi.apache.org/schemas/json/rest/requestlds/1-0-0",
"https://lunomi.apache.org/schemas/json/rest/eventscollectorrequest/1-0-0",
"https://lunomi.apache.org/schemas/json/events/view/properties/1-0-0",
"https://lunomi.apache.org/schemas/json/items/page/1-0-0",
"https://lunomi.apache.org/schemas/json/lURLParameters/1-0-0",
"https://lunomi.apache.org/schemas/json/event/1-0-0",
"https://lunomi.apache.org/schemas/json/timestampeditem/1-0-0",
"https://lunomi.apache.org/schemas/json/events/updateProperties/1-0-0",
"https://unomi.apache.org/schemas/json/consent/1-0-0",
"https://lunomi.apache.org/schemas/json/events/incrementinterest/flattenProperties/1-0-0",
"https://lunomi.apache.org/schemas/json/events/view/1-0-0"

T T [T T T [T T > T T T T T T T T TP T T T T T mp ™

[a—

Custom schemas will also be present in this list once added.

5.2.2. READ A SCHEMA

ItOs possible to get a schema by its id by calling the endpoint ~ POST {{url}}/cxs/jsonSchema/query with the
id of the schema in the payload of the query.

Example:

Apache Unomi 2.x - Documentation - 62

curl --location --request POST 'http://localhost:8181/cxs/jsonSchema/query"' \
-u 'karaf:karaf'

--header 'Content-Type: text/plain’ \

--header 'Cookie: context-profile-id=0f2fbca8-c242-4e6d-a439-d65fcbf0f0a8’ \
--data-raw 'https://unomi.apache.org/schemas/json/event/1-0-0'

5.2.3. CREATE / UPDATE A JSON SCHEMA TO VALIDATE AN EVENT

1tOs possible to add or update JSON schema by calling the endpoint POST {{url}}/cxs/jsonSchema with the
JSON schema in the payload of the request. If the JSON schema exists it will be updated with the new
one.

Example of creation:

curl --location --request POST 'http://localhost:8181/cxs/jsonSchema' \
-u 'karaf:karaf' \
--header 'Content-Type: application/json’ \
--header 'Cookie: context-profile-id=0f2fbca8-c242-4e6d-a439-d65fcbf0f0a8’ \
--data-raw {
"$id": "https://vendor.test.com/schemas/json/events/dummy/1-0-0",
"$schema": "https://json-schema.org/draft/2019-09/schema”,
"self": {

"vendor": "com.vendor.test",

"name": "dummy",

"format": "jsonschema”,

"target": "events",

"version": "1-0-0"
h
"title": "DummyEvent",
"type": "object",
"allof": [

{

"$ref": "https://unomi.apache.org/schemas/json/event/1-0-0"

}
Il
"properties": {

"properties™: {

"$ref": "https://vendor.test.com/schemas/json/events/dummy/properties/1-0-0"

}

by

"unevaluatedProperties": false

S [Tp [T [T M M [T T T T T M T T T T M T T T T T T

5.2.4. DELETING A SCHEMA

To delete a schema, call the endpoint POST {{url}}/cxs/jsonSchema/delete with the id of the schema into
the payload of the request

Example:

Apache Unomi 2.x - Documentation - 63

curl --location --request POST 'http://localhost:8181/cxs/jsonSchema/delete’ \
-u 'karaf:karaf' \

--header 'Content-Type: text/plain’ \

--header 'Cookie: context-profile-id=0f2fbca8-c242-4e6d-a439-d65fcbf0f0a8’ \
--data-raw 'https://vendor.test.com/schemas/json/events/dummy/1-0-0'

5.2.5. ERROR MANAGEMENT

When calling an endpoint with invalid data, such as an invalid value for the sessionld property in the
contextRequest object or eventCollectorRequest object, the server would respond with a 400 error code
and the message Request rejected by the server because: Invalid received data

5.2.6. DETAILS ON INVALID EVENTS

If itDs an event which is incorrect the server will continue to process the request but will exclude the
invalid events. Running Apache Unomi with the logs in debug level will add to the logs the reason why
events are rejected. You can set the log level of the class validating the events to debug by using the
following karaf command:

log:set DEBUG org.apache.unomi.schema.impl.SchemaServicelmpl

5.3. EXTEND AN EXISTING SCHEMA

5.3.1. WHEN A EXTENSION IS NEEDED?

Apache Unomi provides predefined schemas to validate some known events such as a view event.
The Apache Unomi JSON schemas are designed to consider invalid any properties which are not defined
in the JSON schema. So if an unknown property is part of the event, the event will be considered as

invalid.

This means that if your events include additional properties, you will need extensions to describe these.

5.3.2. UNDERSTANDING HOW EXTENSIONS ARE MERGED IN UNOMI

An extension schema is a JSON schema whose id will be overridden and be defined by a keyword named
extends inthe self part of the extension.

When sending an extension through the API, it will be persisted in Elasticsearch then will be merged to
the targeted schema.

What does Omerge a schemaO mean? The merge will simply add in the allOf keyword of the targeted
schema a reference to the extensions. It means that to be valid, an event should be valid against the base

schema and against the ones added in the allOf .

Example of an extension to allow to add a new property in the view event properties:

Apache Unomi 2.x - Documentation - 64

"$id": "https://vendor.test.com/schemas/json/events/dummy/extension/1-0-0",
"$schema": "https://json-schema.org/draft/2019-09/schema”,
"self":{
"vendor":"com.vendor.test",
"name":"dummyExtension",
"format":"jsonschema”,
"extends": "https://unomi.apache.org/schemas/json/events/view/properties/1-0-0",
"version":"1-0-0"
h
"title": "DummyEventExtension”,
"type": "object",
"properties": {
"myNewProp": {
"type": "string"
}
}

~ [Tp T [T M M M M M T T e M M e e mp e

When validating the events of type view, the extension will be added to the schema with the id

https://lunomi.apache.org/schemas/json/events/view/properties/1-0-0 like the following:
"allof": [{
E "$ref": "https://vendor.test.com/schemas/json/events/dummy/extension/1-0-0"
1

With this extension the property myNewProp can now be added to the event.

E
"properties": {
"myNewProp" : "newValue

E
b
E

Process when adding extension:

5.3.3. HOW TO ADD AN EXTENSION THROUGH THE API

Since an extension is also a JSON schema, it is possible to add extensions by calling the endpoint to add a
JSON schema. By calling POST {{url}}/cxs/jsonSchema with the JSON schema in the payload of the
request, the extension will be persisted and will be merged to the targeted schema.

Apache Unomi 2.x - Documentation - 65

