
TortoiseSVN
Windows klient pre Subversion

Version 1.6.16

Stefan Küng
Lübbe Onken
Simon Large

TortoiseSVN: Windows klient pre Subversion: Version 1.6.16
Stefan Küng, Lübbe Onken, a Simon Large
Slovenčina: Oto BREZINA (otik@e-posta.sk)

Vydané 2011/01/21 21:21:17 (r20750)

iii

Obsah
Predhovor ... xi

1. Užívatelia .. xi
2. Sprievodca čitateľa ... xi
3. TortoiseSVN je zdarma! ... xii
4. Komunita ... xii
5. Poďakovania ... xii
6. Použitá terminológia .. xii

1. Úvod ... 1
1.1. Čo je TortoiseSVN? .. 1
1.2. História TortoiseSVN .. 1
1.3. Vlastnosti TortoiseSVN ... 1
1.4. Inštalovanie TortoiseSVN ... 2

1.4.1. Požiadavky na systém ... 2
1.4.2. Inštalácia .. 3
1.4.3. Jazykové balíčky .. 3
1.4.4. Kontrola pravopisu ... 3

2. Základná verzia-ovládacie prevedenie ... 5
2.1. Úložisko .. 5
2.2. Modely verziovania ... 5

2.2.1. Problém zdieľania súborov ... 6
2.2.2. Riešenie typu Zamknúť-Upraviť-Odomknúť .. 6
2.2.3. Riešenie typu Kopírovať-Upraviť-Zlúčiť ... 7
2.2.4. Čo robí Subversion? .. 10

2.3. Subversion v Akcii .. 10
2.3.1. Pracovné kópie ... 10
2.3.2. URL úložiska ... 12
2.3.3. Revízie ... 12
2.3.4. Ako pracovné kópie vyhľadávajú úložiská. .. 14

2.4. Súhrn .. 14
3. Úložisko .. 15

3.1. Vytvorenie úložiska ... 15
3.1.1. Vytvorenie úložiska pomocou príkazového radku. ... 15
3.1.2. Vytváranie úložiska s TortoiseSVN .. 15
3.1.3. Lokálny prístup do úložiska .. 16
3.1.4. Prístup k úložisku v zdielanej sieti. .. 16
3.1.5. Návrh úložiska ... 17

3.2. Záloha úložiska ... 18
3.3. Serverovské pripnuté (hook) skripty ... 19
3.4. Checkout Links ... 19
3.5. Pristupovanie k úložisku ... 20
3.6. Svnserve Based Server ... 20

3.6.1. Úvod .. 20
3.6.2. Inštalácia svnserve .. 20
3.6.3. Running svnserve ... 21
3.6.4. Základná auhentifikácia so svnserve ... 22
3.6.5. Lepšie zabezpečenie pomocou SASL .. 23
3.6.6. Authentication with svn+ssh ... 25
3.6.7. Path-based Authorization with svnserve .. 25

3.7. Server na báze Apache ... 25
3.7.1. Úvod .. 25
3.7.2. Installing Apache .. 26
3.7.3. Inštalácia subversion ... 26
3.7.4. Konfigurácia .. 27
3.7.5. Multiple Repositories ... 29
3.7.6. Path-Based Authorization ... 29

TortoiseSVN

iv

3.7.7. Authentication With a Windows Domain ... 30
3.7.8. Multiple Authentication Sources .. 31
3.7.9. Zabezpečenie servera pomocou SSL ... 32
3.7.10. Using client certificates with virtual SSL hosts ... 34

4. Sprievodca denného použitia .. 36
4.1. Začíname ... 36

4.1.1. Prekrývané ikony .. 36
4.1.2. Kontextové Menu ... 36
4.1.3. Drag and Drop ... 38
4.1.4. Klávesové skratky ... 39
4.1.5. Authentifikácia ... 39
4.1.6. Maximalizovanie Okien ... 40

4.2. Importing Data Into A Repository .. 40
4.2.1. Importovať .. 40
4.2.2. Import in Place .. 42
4.2.3. Special Files .. 42

4.3. Získať pracovnú kópiu ... 42
4.3.1. Hĺbka získavania .. 43

4.4. Posielanie vašich zmien do úložiska ... 45
4.4.1. Dialóg odovzávania ... 45
4.4.2. Change Lists .. 47
4.4.3. Excluding Items from the Commit List ... 47
4.4.4. Odovzdanie správ denníka .. 47
4.4.5. Priebeh odovzdávania .. 49

4.5. Update Your Working Copy With Changes From Others ... 50
4.6. Riešiť konflikty .. 51

4.6.1. Konflikty súborov ... 52
4.6.2. Konfliktov stromov ... 52

4.7. Získavnie informácií o stave ... 55
4.7.1. Prekrývané ikony .. 55
4.7.2. Stĺpce TortoiseSVN vo Windows Explorer-i ... 57
4.7.3. Miestny a vzdialeny stav .. 57
4.7.4. Prezeranie rozdielov .. 59

4.8. Change Lists .. 59
4.9. Revision Log Dialog .. 61

4.9.1. Invoking the Revision Log Dialog ... 62
4.9.2. Akcie denníka revízií ... 62
4.9.3. Získanie ďaľších informácií .. 63
4.9.4. Získavnie viac správ denníka .. 67
4.9.5. Current Working Copy Revision .. 68
4.9.6. Merge Tracking Features .. 68
4.9.7. Changing the Log Message and Author ... 69
4.9.8. Filtrovanie sráv denníka ... 70
4.9.9. Štatistické informácie .. 70
4.9.10. Offline Mode ... 74
4.9.11. Refreshing the View .. 74

4.10. Prezeranie rozdielov ... 74
4.10.1. Rozdiely v súboroch .. 75
4.10.2. Line-end and Whitespace Options .. 76
4.10.3. Porovavanie adresárov ... 76
4.10.4. Diffing Images Using TortoiseIDiff .. 77
4.10.5. Externé Porovnávacie/Zlučovacie Nástroje ... 78

4.11. Adding New Files And Directories ... 79
4.12. Copying/Moving/Renaming Files and Folders ... 80
4.13. Ignorovanie súborov a adresárov .. 81

4.13.1. Pattern Matching in Ignore Lists .. 82
4.14. Vymazávanie, Premenovanie a Presúvanie .. 83

4.14.1. Vymazavanie súborov a adresárov .. 83

TortoiseSVN

v

4.14.2. Presúvanie súborov a adresárov ... 84
4.14.3. Changing case in a filename .. 85
4.14.4. Dealing with filename case conflicts ... 85
4.14.5. Repairing File Renames ... 85
4.14.6. Vymazávanie neverziovaných súborov ... 85

4.15. Vrátiť zmeny .. 86
4.16. Vyčistiť .. 87
4.17. Nastavenia Projektu ... 87

4.17.1. Vlastnosti Subversion .. 88
4.17.2. TortoiseSVN Vlastnosti projektu .. 91

4.18. externé objekty .. 93
4.18.1. externé adresáre .. 93
4.18.2. External Files ... 96

4.19. Branching / Tagging ... 96
4.19.1. Vytvorenie vetvy / značky ... 96
4.19.2. To Checkout or to Switch... ... 98

4.20. Zlučovanie ... 99
4.20.1. Zlučenie rozshahu revízií .. 100
4.20.2. Reintegrate a branch .. 102
4.20.3. Merging Two Different Trees ... 103
4.20.4. Nastavenia zlučovania .. 104
4.20.5. Prezeranie výsledov zlúčovania .. 105
4.20.6. Sledovanie zlučovania .. 106
4.20.7. Handling Conflicts during Merge .. 106
4.20.8. Merge a Completed Branch ... 107
4.20.9. Feature Branch Maintenance .. 108

4.21. Locking .. 108
4.21.1. How Locking Works in Subversion ... 108
4.21.2. Získanie zámku ... 109
4.21.3. Uvolnenie zámku ... 110
4.21.4. Kontrola stavu zamknutia .. 110
4.21.5. Making Non-locked Files Read-Only .. 111
4.21.6. The Locking Hook Scripts .. 111

4.22. Creating and Applying Patches ... 111
4.22.1. Tvorba súboru záplaty .. 111
4.22.2. Použitie záplaty ... 112

4.23. Who Changed Which Line? ... 113
4.23.1. Blame for Files ... 113
4.23.2. Obviniť rozdiely .. 115

4.24. Prezeranie úložiska ... 115
4.25. Graf revízií ... 117

4.25.1. Uzly grafu revizií .. 118
4.25.2. Changing the View .. 119
4.25.3. Použitie grafu ... 121
4.25.4. Refreshing the View ... 121
4.25.5. Pruning Trees ... 122

4.26. Exporting a Subversion Working Copy .. 122
4.26.1. Removing a working copy from version control .. 124

4.27. Premiestnenie pracovnej kópie ... 124
4.28. Integration with Bug Tracking Systems / Issue Trackers .. 125

4.28.1. Adding Issue Numbers to Log Messages .. 125
4.28.2. Getting Information from the Issue Tracker .. 128

4.29. Integration with Web-based Repository Viewers ... 129
4.30. TortoiseSVN Nastavenia .. 129

4.30.1. Hlavné Nastavenia ... 130
4.30.2. Nastavenia grafu revizií .. 137
4.30.3. Nastavenia prekrývania ikon .. 139
4.30.4. Sieťové nastavnia .. 142

TortoiseSVN

vi

4.30.5. Nastavnie externých programov ... 144
4.30.6. Saved Data Settings ... 147
4.30.7. Log Caching ... 148
4.30.8. Klientské (pripnuté) skripty ... 151
4.30.9. Nastavenia TortoiseBlame ... 155
4.30.10. Nastavenia registrov ... 155
4.30.11. Pracovné adresáre Subversion .. 157

4.31. Final Step ... 157
5. Program SubWCRev .. 158

5.1. Parametre príkazového riadka SubWCRev .. 158
5.2. Nahradzovanie kľúčových slov. .. 158
5.3. Príklad klúčových slov ... 159
5.4. COM interface .. 160

6. IBugtraqProvider interface ... 163
6.1. The IBugtraqProvider interface .. 163
6.2. The IBugtraqProvider2 interface ... 164

A. Frequently Asked Questions (FAQ) .. 167
B. Ako spravím 168

B.1. Presunúť/kopírovať viacero súborov naraz. .. 168
B.2. Force users to enter a log message ... 168

B.2.1. Hookskripty na servery .. 168
B.2.2. Vlastnosť projektu .. 168

B.3. Update selected files from the repository ... 169
B.4. Roll back (Undo) revisions in the repository .. 169

B.4.1. Use the revision log dialog ... 169
B.4.2. Použitie dialógu spájania .. 169
B.4.3. Použitie svndumpfilter .. 170

B.5. Compare two revisions of a file or folder .. 170
B.6. Zahrnutie spoločného kódu ... 170

B.6.1. Použitie svn:externals .. 170
B.6.2. Použitie vnorenej pracovnej kópie .. 171
B.6.3. Použitie relativnej cesty ... 171

B.7. Create a shortcut to a repository .. 171
B.8. Ignore files which are already versioned .. 171
B.9. Unversion a working copy .. 172
B.10. Odtránenie pracovnej kópie ... 172

C. Useful Tips For Administrators .. 173
C.1. Rozširovanie TortoiseSVN pomocou skupinovaj politiky .. 173
C.2. Presmerovanie aktualizačnej kontroli .. 173
C.3. Setting the SVN_ASP_DOT_NET_HACK environment variable 174
C.4. Zakázať položky kontextového menu .. 174

D. Automatizácia TortoiseSVN .. 176
D.1. Príkazy TortoiseSVN ... 176
D.2. Príkazy TortoiseIDiff ... 179

E. Command Line Interface Cross Reference .. 180
E.1. Conventions and Basic Rules .. 180
E.2. Príkazy TortoiseSVN ... 180

E.2.1. Získať ... 180
E.2.2. Aktualizovať .. 180
E.2.3. Aktualizovať na revíziu ... 181
E.2.4. Odovzdať .. 181
E.2.5. Porovnať ... 181
E.2.6. Zobraz denník .. 181
E.2.7. Skontrolovať zmeny .. 182
E.2.8. Graf revízií .. 182
E.2.9. Prehliadanie úložiska ... 182
E.2.10. Upraviť konflikty .. 182
E.2.11. Vyriešené ... 182

TortoiseSVN

vii

E.2.12. Premenovať .. 182
E.2.13. Vymazať .. 183
E.2.14. Vrátiť .. 183
E.2.15. Vyčistiť ... 183
E.2.16. Získať zámok ... 183
E.2.17. Uvolniť zámok ... 183
E.2.18. Vetva/značka .. 183
E.2.19. Prepnúť ... 184
E.2.20. Zlúčiť ... 184
E.2.21. Exportovať ... 184
E.2.22. Premiestniť .. 184
E.2.23. Vytvoriť úložisko tu ... 184
E.2.24. Pridať ... 184
E.2.25. Importovať ... 184
E.2.26. Obviniť ... 185
E.2.27. Add to Ignore List .. 185
E.2.28. Vytvoriť záplatu .. 185
E.2.29. Použiť záplatu .. 185

F. Implementation Details ... 186
F.1. Prekrývané ikony ... 186

G. Securing Svnserve using SSH .. 188
G.1. Nastavenie Linux servra ... 188
G.2. Nastavenie Windows servra .. 188
G.3. SSH Client Tools for use with TortoiseSVN ... 189
G.4. Creating OpenSSH Certificates .. 189

G.4.1. Create Keys using ssh-keygen ... 189
G.4.2. Create Keys using PuTTYgen ... 189

G.5. Test using PuTTY ... 189
G.6. Skúšanie SSH s TortoiseSVN .. 190
G.7. SSH Configuration Variants .. 191

Register ... 192
Zoznam .. 195

viii

Zoznam obrázkov
2.1. Typický Klient/Server Systém ... 5
2.2. Problém, ktorému sa treba vyhnúť ... 6
2.3. Riešenie typu Zamknúť-Upraviť-Odomknúť .. 7
2.4. Riešenie typu Kopírovať-Upraviť-Zlúčiť ... 8
2.5. ...Copy-Modify-Merge Continued ... 9
2.6. Súborový systém úložiska ... 11
2.7. Úložisko .. 13
3.1. Menu TortoiseSVN pre neverzované zložky ... 15
4.1. Explorer showing icon overlays ... 36
4.2. Context menu for a directory under version control ... 37
4.3. Explorer file menu for a shortcut in a versioned folder ... 38
4.4. Right drag menu for a directory under version control .. 39
4.5. Authentication Dialog .. 40
4.6. Dialógové okno importovania .. 41
4.7. Dialóg získania ... 43
4.8. Dialóg odovzávania ... 45
4.9. Kontrola pravopisu v onke odovzdávania ... 48
4.10. The Progress dialog showing a commit in progress .. 49
4.11. Progress dialog showing finished update .. 50
4.12. Explorer showing icon overlays ... 55
4.13. Skontrolovať zmeny ... 57
4.14. Dialog odovzdávania so zoznamom zmien ... 60
4.15. The Revision Log Dialog .. 62
4.16. The Revision Log Dialog Top Pane with Context Menu .. 63
4.17. Top Pane Context Menu for 2 Selected Revisions .. 65
4.18. The Log Dialog Bottom Pane with Context Menu .. 66
4.19. The Log Dialog Showing Merge Tracking Revisions .. 69
4.20. Histogram Odovzdania podľa Autorov .. 71
4.21. Koláčový graf odovzdania podľa autorov ... 72
4.22. Commits-by-date Graph .. 73
4.23. Go Offline Dialog ... 74
4.24. The Compare Revisions Dialog .. 77
4.25. Prehliadač zmien obrázkov .. 78
4.26. Explorer context menu for unversioned files ... 79
4.27. Right drag menu for a directory under version control .. 80
4.28. Explorer context menu for unversioned files ... 81
4.29. Explorer context menu for versioned files .. 83
4.30. Dialóg vrátenia ... 86
4.31. Explorer property page, Subversion tab ... 88
4.32. Subversion property page .. 89
4.33. Pridanie vlastností ... 90
4.34. Dialóg vetvy / značky ... 97
4.35. The Switch Dialog ... 99
4.36. The Merge Wizard - Select Revision Range .. 101
4.37. The Merge Wizard - Reintegrate Merge ... 103
4.38. The Merge Wizard - Tree Merge .. 104
4.39. The Merge Conflict Callback Dialog ... 107
4.40. The Merge reintegrate Dialog ... 108
4.41. Dialóg zamykania .. 109
4.42. Dialóg kontroly zmien .. 110
4.43. Dialóg Tvroby záplaty .. 112
4.44. The Annotate / Blame Dialog ... 113
4.45. TortoiseBlame ... 114
4.46. Prezeranie úložiska ... 116
4.47. Graf revízií ... 118

TortoiseSVN

ix

4.48. The Export-from-URL Dialog .. 123
4.49. Dialógové okno premiesnenia .. 124
4.50. Example issue tracker query dialog ... 128
4.51. The Settings Dialog, General Page .. 130
4.52. The Settings Dialog, Context Menu Page ... 132
4.53. The Settings Dialog, Dialogs 1 Page ... 133
4.54. The Settings Dialog, Dialogs 2 Page ... 134
4.55. The Settings Dialog, Colours Page .. 136
4.56. The Settings Dialog, Revision Graph Page .. 137
4.57. The Settings Dialog, Revision Graph Colors Page .. 138
4.58. The Settings Dialog, Icon Overlays Page .. 139
4.59. The Settings Dialog, Icon Set Page ... 142
4.60. The Settings Dialog, Network Page ... 143
4.61. The Settings Dialog, Diff Viewer Page .. 144
4.62. The Settings Dialog, Diff/Merge Advanced Dialog ... 146
4.63. The Settings Dialog, Saved Data Page ... 147
4.64. The Settings Dialog, Log Cache Page .. 148
4.65. The Settings Dialog, Log Cache Statistics .. 150
4.66. The Settings Dialog, Hook Scripts Page ... 151
4.67. The Settings Dialog, Configure Hook Scripts .. 152
4.68. The Settings Dialog, Issue Tracker Integration Page ... 154
4.69. The Settings Dialog, TortoiseBlame Page ... 155
C.1. Dialóg aktualizácie .. 173

x

Zoznam tabuliek
2.1. URL na prístup k úložisku .. 12
3.1. Apache httpd.conf Settings ... 28
5.1. Zoznam parametrov príkazového riadka ... 158
5.2. Zoznam parametrov príkazového riadka ... 159
5.3. podporpvané automatizačné metódy COM ... 160
C.1. Menu entries and their values .. 174
D.1. Zoznam príkazov a možností .. 176
D.2. Zoznam prístupných možností ... 179

xi

Predhovor

• Pracujete v tíme?

• Už sa vám stalo, že ste pracovali na súbore a niekto iný pracoval na tom istom súbore v tom istom
čase? Stratili ste už zmeny z takéhoto dôvodu?

• Už sa vám niekedy stalo, že ste uložili zmeny a potom ste chceli zmeny vrátiť? Už ste si niekedy želali
vidieť ako vyzeral súbor pred nejakým časom?

• Už ste niekedy našli chybu v projekte a chceli ste vedieť kedy sa dostala do vašich súborov?

Ak ste odpovedali “áno” aspoň na jednu z týchto otázok, potom TortoiseSVN je práve pre vás! Čítaje
ďalej a zistite ako môže TortoiseSVN pomôcť pri vašej práci. Nie je to zložité.

1. Užívatelia
This book is written for computer literate folk who want to use Subversion to manage their data, but are
uncomfortable using the command line client to do so. Since TortoiseSVN is a windows shell extension
it's assumed that the user is familiar with the windows explorer and knows how to use it.

2. Sprievodca čitateľa
This Predhovor explains a little about the TortoiseSVN project, the community of people who work on
it, and the licensing conditions for using it and distributing it.

The Kapitola 1, Úvod explains what TortoiseSVN is, what it does, where it comes from and the basics
for installing it on your PC.

V Kapitola 2, Základná verzia-ovládacie prevedenie dávame krátky úvod do správy verzií Subversion,
ktoré je pod TortoiseSVN. Tento úvod je prevzatý z dokumentácie k Subversion a vysvetľujne rôzne
prístupy k správe verziíí, a ako funguje Subversion.

The chapter on Kapitola 3, Úložisko explains how to set up a local repository, which is useful for testing
Subversion and TortoiseSVN using a single PC. It also explains a bit about repository administration
which is also relevant to repositories located on a server. There is also a section here on how to setup
a server if you need one.

The Kapitola 4, Sprievodca denného použitia is the most important section as it explains all the main
features of TortoiseSVN and how to use them. It takes the form of a tutorial, starting with checking out
a working copy, modifying it, committing your changes, etc. It then progresses to more advanced topics.

Kapitola 5, Program SubWCRev je samostatný program zahrnutý v TortoiseSVN, ktorý može extrahovať
informácie z vašej pracovnej kópie do súboru. Toto je užitočné pre vkladanie informácií o revízií do
prekladu.

SekciaDodatok B, Ako spravím ... odpovedá ne niektoré časté otázky o vykonávaní úloh, ktoré niesú
popísane inde.

Sekcia Dodatok D, Automatizácia TortoiseSVN ukazuje ako TortoiseSVN GUI dialógy môžu byť volané
z príkazového riadka. Tot je výhodné pri skriptoch, ktoré potrebujú interakciu s užívateľom.

The Dodatok E, Command Line Interface Cross Reference give a correlation between TortoiseSVN
commands and their equivalents in the Subversion command line client svn.exe.

Predhovor

xii

3. TortoiseSVN je zdarma!
TortoiseSVN je zdarma. Nemusíte za neho platiť a môžete ho použiť ako sa vám páči. Je vyvinutý pod
licenciou GNU General Public License (GPL).

TortoiseSVN is an Open Source project. That means you have full read access to the source code of this
program. You can browse it on this link http://code.google.com/p/tortoisesvn/source/browse/. You will be
prompted to enter username and password. The username is guest, and the password must be left blank.
The most recent version (where we're currently working) is located under /trunk/, and the released
versions are located under /tags/.

4. Komunita
Both TortoiseSVN and Subversion are developed by a community of people who are working on those
projects. They come from different countries all over the world and work together to create wonderful
programs.

5. Poďakovania
Tim Kemp

za začatie projektu

Stefan Küng
for the hard work to get TortoiseSVN to what it is now

Lübbe Onken
za nádherné ikonky, logo, vychytávanie chýb, preklad a organizovanie prekladov

Simon Large
for helping with the documentation and bug hunting

Kniha subversion
za úvod do Subversion a kapitolu 2, ktorú sme sem okopírovali

Projekt štýlu Tigris
za niektoré štýly, ktoré sa požili v dokumentácií

Naši spolupracovníci
for the patches, bug reports and new ideas, and for helping others by answering questions on our
mailing list.

Naši darcovia
za mnoho hodín dobrej hudby, ktoré nám poslali

6. Použitá terminológia
Aby bolo čítanie manuálu jednoduchšie mená obrazoviek a Menu TortoiseSVN sú vyznačené použitím
iného písma. Napríklad: The Denník.

Položka menu je zobrazená šípkou. TortoiseSVN → Zobraziť denník znamená: vyberteZobraziť denník
z kontextového menu TortoiseSVN.

Where a local context menu appears within one of the TortoiseSVN dialogs, it is shown like this: Context
Menu → Save As ...

Tlačitka Uživateľského rozhrania sú zobrazené: Stlačte OK pre pokračovanie.

User Actions are indicated using a bold font. Alt+A: press the Alt-Key on your keyboard and while
holding it down press the A-Key as well. Right-drag: press the right mouse button and while holding it
down drag the items to the new location.

http://code.google.com/p/tortoisesvn/source/browse/

Predhovor

xiii

Systémový vstup a výstup je označený z odlišným písmom.

Dôležité

Dôležité poznámky sú označené ikonkou.

Tip

Tipy, ktoré vám zjednodušujú život.

Výstraha

Miesta, kde treba byť opatrný v tom čo robíte.

Varovanie

Where extreme care has to be taken, data corruption or other nasty things may occur if these
warnings are ignored.

1

Kapitola 1. Úvod
Version control is the art of managing changes to information. It has long been a critical tool for
programmers, who typically spend their time making small changes to software and then undoing or
checking some of those changes the next day. Imagine a team of such developers working concurrently -
and perhaps even simultaneously on the very same files! - and you can see why a good system is needed
to manage the potential chaos.

1.1. Čo je TortoiseSVN?
TortoiseSVN is a free open-source client for the Subversion version control system. That is, TortoiseSVN
manages files and directories over time. Files are stored in a central repository. The repository is much
like an ordinary file server, except that it remembers every change ever made to your files and directories.
This allows you to recover older versions of your files and examine the history of how and when your
data changed, and who changed it. This is why many people think of Subversion and version control
systems in general as a sort of “time machine”.

Some version control systems are also software configuration management (SCM) systems. These
systems are specifically tailored to manage trees of source code, and have many features that are specific
to software development - such as natively understanding programming languages, or supplying tools for
building software. Subversion, however, is not one of these systems; it is a general system that can be
used to manage any collection of files, including source code.

1.2. História TortoiseSVN
In 2002, Tim Kemp found that Subversion was a very good version control system, but it lacked a good
GUI client. The idea for a Subversion client as a Windows shell integration was inspired by the similar
client for CVS named TortoiseCVS.

Tim studied the source code of TortoiseCVS and used it as a base for TortoiseSVN. He then started the
project, registered the domain tortoisesvn.org and put the source code online. During that time,
Stefan Küng was looking for a good and free version control system and found Subversion and the source
for TortoiseSVN. Since TortoiseSVN was still not ready for use then he joined the project and started
programming. Soon he rewrote most of the existing code and started adding commands and features, up
to a point where nothing of the original code remained.

As Subversion became more stable it attracted more and more users who also started using TortoiseSVN
as their Subversion client. The user base grew quickly (and is still growing every day). That's when Lübbe
Onken offered to help out with some nice icons and a logo for TortoiseSVN. And he takes care of the
website and manages the translation.

1.3. Vlastnosti TortoiseSVN
Čo robí TortoiseSVN tak dobrým klientom pre Subversion? Tu je krátky zoznam funkcií

Intergrovanie do šelu

TortoiseSVN integrates seamlessly into the Windows shell (i.e. the explorer). This means you can
keep working with the tools you're already familiar with. And you do not have to change into a
different application each time you need functions of the version control!

And you are not even forced to use the Windows Explorer. TortoiseSVN's context menus work in
many other file managers, and in the File/Open dialog which is common to most standard Windows
applications. You should, however, bear in mind that TortoiseSVN is intentionally developed as
extension for the Windows Explorer. Thus it is possible that in other applications the integration is
not as complete and e.g. the icon overlays may not be shown.

Úvod

2

Prekrývané ikony
Stav verziovaných súborovo a adresárov je zobrazený malov prekrývajúcou ikonkou. Tako môžete
vidieť aký je stav vačej pracovnej kópie.

Jednoduchý prístup k príkazom Subversion
Všetky príkazy Subversion sú prístupne z kontextovej ponuky explorer-u. TortoiseSVN si tam pridá
svoju (pod)ponuku.

Keďže TortoiseSVN je klient pre Subversion, radi by sme ukázali niekoľko funkcií samotného
Subversion:

Verziovanie adresárov
CVS sleduje len históriu jednotlivých súborov, kým Subversion zahrňuje “virtuálny” verziovaný
súborový systém, ktorý sleduje časové zmeny celých adresárových stromov. Verziované sú súbory aj
adresáre. Výslekom je, že existujú skutočné klientské príkazy presunúť a kopírovať, ktoré pracujú
so súbormi a adresármi.

Nedeliteľné odovzdania
Odovzdanie je pridané do úložiska kompletne, alebo nie je vôbec pridané. Toto umožňuje vyvojárom
vytvárať a odovzdávať zmeny ako logické celky.

Verziované metasúbory
Každý súbor a adresár má neviditeľné “vlastnosti”. Môžete pridať a uložiť akýkoľvek pár kľúč/
hodnota podľa vašeho želania. Vlastnosti sú verziované rovnako ako obsah.

Výber sieťovej vrstvy
Subversion has an abstracted notion of repository access, making it easy for people to implement
new network mechanisms. Subversion's “advanced” network server is a module for the Apache
web server, which speaks a variant of HTTP called WebDAV/DeltaV. This gives Subversion a big
advantage in stability and interoperability, and provides various key features for free: authentication,
authorization, wire compression, and repository browsing, for example. A smaller, standalone
Subversion server process is also available. This server speaks a custom protocol which can be easily
tunneled over ssh.

Consistent data handling
Subversion expresses file differences using a binary differencing algorithm, which works identically
on both text (human-readable) and binary (human-unreadable) files. Both types of files are stored
equally compressed in the repository, and differences are transmitted in both directions across the
network.

Efficient branching and tagging
The cost of branching and tagging need not be proportional to the project size. Subversion creates
branches and tags by simply copying the project, using a mechanism similar to a hard-link. Thus these
operations take only a very small, constant amount of time, and very little space in the repository.

Upraviteľnosť
Subversion nie je zaťažený históriou; je impementovaný a súbor zdielaných knižníc v jazyku C s
dobre definovaným API. Toto robí Subversion dobre udržiavateľný a použiteľný pre iné aplikácia
a jazyky.

1.4. Inštalovanie TortoiseSVN
1.4.1. Požiadavky na systém

TortoiseSVN runs on Windows 2000 SP2, Windows XP or higher. Windows 98, Windows ME and
Windows NT4 are no longer supported since TortoiseSVN 1.2.0, but you can still download the older
versions if you really need them.

If you encounter any problems during or after installing TortoiseSVN please refer to Dodatok A,
Frequently Asked Questions (FAQ) first.

Úvod

3

1.4.2. Inštalácia

TortoiseSVN comes with an easy to use installer. Double click on the installer file and follow the
instructions. The installer will take care of the rest.

Dôležité

Na inštaláciu TortoiseSVN potrebujete administrátorské práva.

1.4.3. Jazykové balíčky

The TortoiseSVN user interface has been translated into many different languages, so you may be able to
download a language pack to suit your needs. You can find the language packs on our translation status
page [http://tortoisesvn.net/translation_status]. And if there is no language pack available yet, why not
join the team and submit your own translation ;-)

Each language pack is packaged as a .exe installer. Just run the install program and follow the
instructions. Next time you restart, the translation will be available.

1.4.4. Kontrola pravopisu

TortoiseSVN includes a spell checker which allows you to check your commit log messages. This is
especially useful if the project language is not your native language. The spell checker uses the same
dictionary files as OpenOffice [http://openoffice.org] and Mozilla [http://mozilla.org].

The installer automatically adds the US and UK English dictionaries. If you want other languages, the
easiest option is simply to install one of TortoiseSVN's language packs. This will install the appropriate
dictionary files as well as the TortoiseSVN local user interface. Next time you restart, the dictionary will
be available too.

Or you can install the dictionaries yourself. If you have OpenOffice or Mozilla installed, you can copy
those dictionaries, which are located in the installation folders for those applications. Otherwise, you need
to download the required dictionary files from http://wiki.services.openoffice.org/wiki/Dictionaries

Once you have got the dictionary files, you probably need to rename them so that the filenames only
have the locale chars in it. Example:

• en_US.aff

• en_US.dic

Then just copy them to the bin sub-folder of the TortoiseSVN installation folder. Normally this will
be C:\Program Files\TortoiseSVN\bin. If you don't want to litter the bin sub-folder, you
can instead place your spell checker files in C:\Program Files\TortoiseSVN\Languages. If
that folder isn't there, you have to create it first. The next time you start TortoiseSVN, the spell checker
will be available.

If you install multiple dictionaries, TortoiseSVN uses these rules to select which one to use.

1. Check the tsvn:projectlanguage setting. Refer to Oddiel 4.17, “Nastavenia Projektu” for
information about setting project properties.

2. If no project language is set, or that language is not installed, try the language corresponding to the
Windows locale.

3. If the exact Windows locale doesn't work, try the “Base” language, eg. de_CH (Swiss-German) falls
back to de_DE (German).

http://tortoisesvn.net/translation_status
http://tortoisesvn.net/translation_status
http://tortoisesvn.net/translation_status
http://openoffice.org
http://openoffice.org
http://mozilla.org
http://mozilla.org
http://wiki.services.openoffice.org/wiki/Dictionaries

Úvod

4

4. If none of the above works, then the default language is English, which is included with the standard
installation.

5

Kapitola 2. Základná verzia-ovládacie
prevedenie

Táto kapitola je nepatrne zmenenou verziou kapitoly z Subversion knihy. Online verzia Subversion knihy
je prístupná tu:http://svnbook.red-bean.com/.

Táto kapitola je krátky, približný úvod do Subversion. Ak je pre vás ovládanie verzie novinkou,
táto kapitola je definitívne pre vás. Začneme s diskusiou všeobecných ovládacích prevedení verzie,
prepracujeme sa k špecifickým predstavám Subversion a ukážeme si jednoduché príklady Subversion v
praxi.

Even though the examples in this chapter show people sharing collections of program source code, keep
in mind that Subversion can manage any sort of file collection - it's not limited to helping computer
programmers.

2.1. Úložisko

Subversion je centralizovaný systém na zdieľanie informácií. V jeho jadre je úložisko, čo je centrálny
zdroj dát. Úložisko skladuje informácie vo forme stromu súborového systému - typická hierarchia súborov
a adresárov. Akékoľvek množstvo klientov sa napojí na úložisko a potom číta a píše do týchto súborov.
Písaním dát klient vyrába informáciu dostupnú pre ostatných; čítaním dát získava klient informácie od
ostatných.

Obrázok 2.1. Typický Klient/Server Systém

Prečo je teda tento systém zaujímavý? Doposiaľ všetko vyzerá ako definícia typického súborového
servera. A samozrejme, úložisko je typ súborového servera, ale nie je to obyčajný druh. Čo robí
Subversion úložisko výnimočným je, že si pamätá každú zmenu

Keď klient číta dáta v úložisku, normálne vidí len poslednú verziu zo stromu súborového systému. Ale
klient má tiež možnosť vidieť predošlé stavy súborového systému. Napríklad, klient sa môže opýtať
na niečo z minulosti ako, “čo obsahoval tento súbor minulú stredu”, alebo “kto menil tento súbor ako
posledný a aké zmeny urobil?” Toto sú typy otázok, ktoré sú podstatou akéhokoľvek systému správy
verzií: systémov, ktoré sú navrhnuté na nahrávanie a sledovanie dát po celý čas.

2.2. Modely verziovania
Všetky systémy správy verzií musia vyriešiť základný problém: ako systém umožní užívateľom zdieľať
informácie, ale zabráni aby si stúpali po nohách? Je príliš jednoduché, aby si užívatelia v úložisku omylom
navzájom prepisovali vykonané zmeny.

http://svnbook.red-bean.com/

Základná verzia-ovládacie prevedenie

6

2.2.1. Problém zdieľania súborov

Prestavte si takúto situáciu: predpokladajme, že mame dvoch spolupracovníkov: Harry a Sally. Obidvaja
sa rozhodnú upraviť ten istý súbor úložiska v jednom čase. Ak Harry odovzdá zmeny ako prvý potom je
možné, že (o chvíľu) Sally ich môže omylom prepísať jej novou verziu súboru. Napriek tomu, že Harry-
ho verzia nebude stratená, (pretože systém si pamätá každú zmenu), žiadna Harry-ho zmena nebude v
Sally-nej novej verzií súboru, pretože nikdy nevidela Harry-ho zmeny. Harry-ho práca je teda efektívne
stratená - alebo aspoň chýbajúca v poslednej verzií súboru - a to pravdepodobne omylom. Toto je určite
situácia, ktorej sa chceme vyhnúť!

Obrázok 2.2. Problém, ktorému sa treba vyhnúť

2.2.2. Riešenie typu Zamknúť-Upraviť-Odomknúť

Many version control systems use a lock-modify-unlock model to address this problem, which is a very
simple solution. In such a system, the repository allows only one person to change a file at a time. First
Harry must lock the file before he can begin making changes to it. Locking a file is a lot like borrowing
a book from the library; if Harry has locked a file, then Sally cannot make any changes to it. If she tries
to lock the file, the repository will deny the request. All she can do is read the file, and wait for Harry
to finish his changes and release his lock. After Harry unlocks the file, his turn is over, and now Sally
can take her turn by locking and editing.

Základná verzia-ovládacie prevedenie

7

Obrázok 2.3. Riešenie typu Zamknúť-Upraviť-Odomknúť

Problémom modelu zamknúť-upraviť-odomknúť je, žel je trochu reštriktívny a často vedie k zastaveniu
užíateľov:

• Zamykanie môže spôsobiť administratívne problémy. Harry zamkne súbor a zabudne na to. Medzi tý
Sally stále čaká, aby mohla upravovať súbor a má zviazané ruky. Potom Harry odíde na dovolenku.
Sally teda musí požiadať administrátora aby uvoľnil Harry-ho zámok. Situácia končí nežiadaným
oneskorením a stratou času.

• Zamykanie môže spôsobiť nežiadanú serializáciu. Čo ak Harry upravuje začiatok textového súboru
Sally chce jednoducho upraviť koniec súboru v tom istom čase? Tieto zmeny sa neprekrývajú. Mohli by
jednoducho a bez škody upravovať súbor súčasne, predpokladajúc, že by boli zmeny správne zlúčené.
Nie je potreba aby v tejto situácií získavali ťah.

• Zamykanie môže vyvolať falošný dojem zabezpečenia. Predstierajme, že Harry zamyká a upravuje
súbor A, zatiaľ čo Sally simultánne zamyká a upravuje súbor B. Ale predstavme si, že A a B
závisia jeden na druhom a zmeny urobené v každom z nich sú významne nekompatibilné. Náhle A
a B spolu nespolupracujú. Zamykací systém bol bezmocný predísť tomuto problému - hoci nejak
poskytoval dojem falošného zabezpečenia. Pre Harryho a Sally je jednoduché predstaviť si, že pokiaľ
uzamknú súbory, obidva začnú bezpečnú, izolovanú úlohu a teda im to včas zabráni v diskutovaní ich
nekompatibilných zmien.

2.2.3. Riešenie typu Kopírovať-Upraviť-Zlúčiť
Subversion, CVS a ostatné systémy správy verzií používajú model kopírovať-meniť-zlúčiť ako alternatívu
k zamykaniu. V tomto modeli, každý užívateľov klient načíta úložisko a vytvorí osobnú pracovnú

Základná verzia-ovládacie prevedenie

8

kópiu súboru alebo projektu. Užívatelia preto môžu pracovať paralelne, upravovať ich súkromné kópie.
Nakoniec sú súkromné kópie zlúčené dokopy do novej, finálnej verzie. Systém správy verzií často
pomáha so zlučovaním, ale koniec koncov človek je zodpovedný, aby všetko prebehlo bezchybne.

Tu máme príklad. Povedzme že Harry a Sally vytvorili každý pracovné kópie toho istého projektu,
zkopírovaného z úložiska. Pracujú súbežne a urobili zmeny do toho istéhu súboru A vo svojich kópiách.
Sally uložila svoje zmeny do úložiska ako prvá. Keď Harry skúša uložiť jeho zmeny neskôr, úložisko
ho informuje, že jeho súbor A je neplatný. Inými slovami oznamuje, že súbor A v úložisku bol nejakým
spôsobom zmenený odkedy ho naposledy kopíroval. Preto Harry požiada svojho klienta zlúčiť všetky
nové zmeny z úložiska do jeho pracovnej kópie súboru A. Je pravdepodobné, že sa zmeny, ktoré urobila
Sally nebudú prekrývať s jeho vlastnými; takže keď už Harry integroval obidve zmeny, uloží svoju
pracovnú kópiu naspäť do úložiska.

Obrázok 2.4. Riešenie typu Kopírovať-Upraviť-Zlúčiť

Základná verzia-ovládacie prevedenie

9

Obrázok 2.5. ...Copy-Modify-Merge Continued

But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a conflict,
and it's usually not much of a problem. When Harry asks his client to merge the latest repository changes
into his working copy, his copy of file A is somehow flagged as being in a state of conflict: he'll be
able to see both sets of conflicting changes, and manually choose between them. Note that software can't
automatically resolve conflicts; only humans are capable of understanding and making the necessary
intelligent choices. Once Harry has manually resolved the overlapping changes (perhaps by discussing
the conflict with Sally!), he can safely save the merged file back to the repository.

Kopírovať-upraviť-zlúčiť model môže vyzerať trochu chaotický, ale v praxi, pracuje extrémne hladko.
Užívatelia môžu pracovať paralelne, nemusia čakať jeden na druhého. Keď pracujú na tých istých
súboroch, ukáže sa že sa väčšina ich súbežných zmien vôbec neprekrýva; konflikty sú zriedkavé. A
množstvo času, ktoré zaberie na vyriešenie konfliktov je zďaleka menšie než čas stratený zamykacím
systémom.

Na koniec, všetko sa zredukuje na jediný kritický faktor: komunikácia užívateľov. Ak užívatelia zle
komunikujú, oba, syntaktické a významové konflikty narastajú. Žiadny systém prinútí užívateľov
perfektne komunikovať a taktiež môže odhaliť významové konflikty. Takže nemá význam si falošne
nahovoriť, že systém zamykania predíde nejako konfliktom; v praxi, zamykanie zabraňuje produktivite
viac než čokoľvek iné.

Avšak je jedna spoločná situácia kde zamknúť-upraviť-odomknúť model vychádza lepšie a to tam, kde
sú nezlúčiteľné súbory. Napríklad ak vaše úložisko obsahuje nejaké grafické obrazy a dvaja ľudia zmenia

Základná verzia-ovládacie prevedenie

10

obraz v tom istom čase, je nemožné aby boli tieto zmeny spolu zlúčené. Obaja, Harry alebo Sally stratia
svoje zmeny.

2.2.4. Čo robí Subversion?

Subversion používa kopírovať-upraviť-zlúčiť riešenie ako predvolené a v mnohých prípadoch je toto
jediné, čo budete potrebovať. Avšak, od Verzie 1.2, Subversion tiež podpporuje zamykanie súboru, takže
ak máte nezlúčiteľné súbory alebo ak ste jednoducho nútený manažmentom zamykať, Subversion bude
stále poskytovať funkcie, ktoré potrebujete.

2.3. Subversion v Akcii

2.3.1. Pracovné kópie

Už ste čítali o pracovných kópiách; teraz predvedieme ako Subversion klient vytvára a používa.

Pracovná kópia Subversion je obyčajný strom adresárov vo vašom lokálnom systéme, pozostávajúci zo
zbierky súborov. Môžte tieto súbory upravovať akokoľvek si želáte a ak sú to súbory zdrojových kódov,
môžte z nich zostaviť program bežnou cestou. Vaša pracovná kópia je váš vlastný súkromný pracovný
priestor: Subversion nikdy nebude pripájať zmeny iných ľudí, ani sprístupňovať vaše zmeny druhým,
pokiaľ mu vy výlučne neprikážete, aby tak urobil.

Potom ako ste urobili zmeny súborov vo vašej pracovnej kópii a overili, že všetky správne pracujú,
Subversion vám poskytne príkaz na zverejnenie vaších zmien ostatným ľuďom pracujúcich s vami na
vašom projekte (zapísaním do úložiska). Ak ostatní ľudia publikujú ich vlastné zmeny, Subversion vám
poskytne príkaz na zlúčenie týchto zmien vo vašom pracovnom adresári (načítaním z úložiska).

Pracovná kópia taktiež obsahuje nejaké prídavné súbory, vytvorené a udržiavané Subverziou, aby
pomohli realizovať tieto príkazy. Predovšetkým, každý adresár vo vašej pracovnej kópii obsahuje
podadresár pomenovaný .svn, taktiež známy ako pracovná kópia administratívny adresár. Súbory v
každom administratívnom adresári pomáhaju Subverzii rozoznať, ktoré súbory obsahujú nezverejnené
zmeny a ktoré súbory sú neplatné s ohľadom na prácu iných.

A typical Subversion repository often holds the files (or source code) for several projects; usually, each
project is a subdirectory in the repository's filesystem tree. In this arrangement, a user's working copy
will usually correspond to a particular subtree of the repository.

Napríklad, predpokladajme, že máte úložisko, ktoré obsahuje dva softvérové projekty.

Základná verzia-ovládacie prevedenie

11

Obrázok 2.6. Súborový systém úložiska

Inými slovami, koreňový adresár úložiska má dva podadresáre: maľovať a kalkulovať.

Aby ste získali pracovnú kópiu, musíte najprv získať niektorý pod-strom z úložiska. (Výraz získať môže
vyznieť ako niečo, čo má dočinenia so zamykaním alebo uschovávaním zdrojov, ale nie je to tak);
jednoducho len vytvorí súkromnú kópiu projektu pre vás).

Predpokladajme, že urobíte zmeny v button.c. Keďže si .svn adresár pamätá dátum zmeny súboru
a pôvodný obsah, Subversion vie povedať, že ste zmenili súbor. Avšak, Subversion nezverejní žiadne
zmeny pokiaľ ste mu/jej tak vyslovene neprikázali. Úkon zverejnenia vašich zmien je všeobecne viac
známy ako odovzdanie (alebo overovanie) zmien do úložiska.

Aby ste zverejnili vaše zmeny ostatným môžete použiť príkaz odovzdať.

Teraz boli vaše zmeny do button.c odovzdané do úložiska; ak iný užívateľ získa pracovnú kópiu /
kalkulovať, uvidí vaše zmeny v najnovšej verzii vášho súboru.

Predpokladajmem, že máte spolupracovníka, Sally, ktorá získala pracovnú kópiu /kalkulovať v
tom istom čase ako vy. Keď odovzdáte vašu zmenu do button.c, Sallyina pracovná kópia ostane
nezmenená; Subversion zmení len pracovné kópie na úživateľovu požiadavku.

Doviesť jej projekt do aktuálneho stavu, Sallz môže požiadať Subversion o aktualizovanie jej pracovnej
kópie, využitím príkazu aktualizovať Subverzie.Tento príkaz včlení vaše zmeny do jej pracovnej kópie,
takisto ako všetky ostatné, ktoré boli odovzdané odkedy ich Sally získala.

Všimnite si, že Sally nepotrebovala špecifikovať, ktoré súbory chce aktualizovať; Subversion používa
informácie v .svn adresári a ďalšie informácie v úložisku na rozhodnutie, ktoré súbory by mali byť
aktualizované.

Základná verzia-ovládacie prevedenie

12

2.3.2. URL úložiska

Úložiská Subversion môžu byť prístupné mnohými rozlišnými metódami - na lokálnom disku alebo cez
rôzne sieťové protokoly. Hoci pozícia úložiska je vždy URL. Schéma URL udáva prístupovú metódu:

Schéma Metódy prístupu

file:// Priamy prístup k úložisku na miestnom, alebo sieťovom disku.

http:// Prístup cez WebDAV protokol k Subversion-ovému Apache serveru.

https:// Rovnako ako http://, ale s SSL kryptovaním.

svn:// Neautentifikovaný TCP/IP prístup cez vlastný protokol k svnserve
serveru.

svn+ssh:// autentifikovaný, šifrovaný TCP/IP prístup pomocou vlastného protokolu
k svnserve serveru

Tabuľka 2.1. URL na prístup k úložisku

Pre väčšiu časť, URL Subverzie používa štandardnú skladbu, dovoľujúc menám serverov a číslam
portov byť špecifikovaných ako časť URL. súbor:// prístupová metóda je obyčajne používaná pre
lokálny prístup, hoci môže byť použitá s cestami UNC do sieťového hostiteľa. URL preto zoberie
podobu file://hostname/path/to/repos. Pre lokálny prístroj, je od hostname URL časti
požadované, aby bola neprítomná alebo localhost. Kvôli tomu, sa lokálne cesty objavujú s tromi
lomítkami, file:///path/to/repos.

Taktiež, užívatelia file:// schémy v platforme Windowsu budú musieť používať neoficiálne
“štandardnú” skladbu pre prístup do úložísk, ktoré sú na tom istom prístroji, ale na inej mechanike než
je klientova súčasná pracujúca mechanika. Obidva s dvoch nasledujúcich URL cestných skladieb bude
pracovať kde X je mechanika na ktorej úložisko spočíva:

file:///X:/path/to/repos
...
file:///X|/path/to/repos
...

Zapamätajte si, že URL používa obyčajné lomítka hoci prirodzená (nie-URL) forma cesty vo Windowse
používa spätné lomítko.

Prístup k úložisku FSFS je bezpečný aj pomocou zdielaného disku, ale k BDB úložisku takýto prístup
nie je možný.

Varovanie

Do not create or access a Berkeley DB repository on a network share. It cannot exist on a
remote filesystem. Not even if you have the network drive mapped to a drive letter. If you
attempt to use Berkeley DB on a network share, the results are unpredictable - you may see
mysterious errors right away, or it may be months before you discover that your repository
database is subtly corrupted.

2.3.3. Revízie

Pomocou svn odovzdať akcie môžeme uverejniť zmeny pre ľubovólny počet súborov a zložiek ako
jedena nedeliteľná akcia. Vo vašej pracovnej kópii môžete meniť obsah súborov, vytvárať, mazať,
premenovávať a kopírovať súbory a zložky a potom vykonať celú množinu zmien ako celok.

Základná verzia-ovládacie prevedenie

13

V úložiskui je každá prijatá zmena považovaná ako nedeliteľná akcia: buď všetky zmeny sú vykonané,
alebo žiadna z nich sa neuskutoční. Subversion si zachováva túto nedelitelnosť ako výsledok pri pádoch
programu, pádoch systému, problémami zo sieťou a inými užívateľskými akciami.

Zakaždým, keď úložisko prijme zmeny, vytvorí nový stav súborového stromu s názvom revision. Každej
revízii je priradené unikátne číslo o jedna vačšie ako mala predchádzajúca revízia. Úplne prvá revízia v
novo vytvorenom úložisku je označená číslom nula a nebosahuje nič okrem koreňový adresár.

Vhodný spôsob ako si predstaviť úložisko je ako skupinu stromov. Predstavte si rad revíznych čísel
začínajúcich nulou ťiahnucich sa z ľava do prava. Každé revizné číslo má strom súborov a každý strom
je “snímok”

Obrázok 2.7. Úložisko

Globálne číslo revízie

Na rozdiel od mnohých iných systémov pre správu verzii, revizne číslo Subversion zodpovedá
celému stromu, nie jednotlivým súborom. Každé revizné číslo vyberá celý strom, konkrétny stav
repozitára po prijatí zmien. Ďalším spôsobom ako si to predsatviť je, že revízia N zodpovedá stavu
súborom v úložiskui po N-tej zmene. Keď používateľ subverzie hovorí o " revízii 5 foo.c", má
na mysli "foo.c čo zodpovedá revízii číslo 5." Všimnite si, že vo všeobecnosti platí, že revízia
súborov N a M nutne neznamená rozdielne súbory.

Je dôležité poznamenať, že pracovná kópie namusí nutne vždy zodpovedať jednej revízií. Môže taktiež
obsahovať súbory z viacero rôznych revizií. Napríklad predpokladajme, ze získate pracovnú kópiu z
úložiska s aktuálnou revíziou 4:

calc/Makefile:4
 integer.c:4
 button.c:4

Teraz, pracovný adresár zodpovedá presne revízií 4 v úložisku. Ašak predpokladajme, že ste urobili
zmeny v button.c, a tieto zmeny ste odovzdali. Predpokladajúc, že neboli vykonané žiadne ine zmeny,
vaše odovzdanie vytvorí v úložisku reviíziu 5 a vaša pracovná bude teraz vyzerať takto:

Základná verzia-ovládacie prevedenie

14

calc/Makefile:4
 integer.c:4
 button.c:5

Suppose that, at this point, Sally commits a change to integer.c, creating revision 6. If you use svn
update to bring your working copy up to date, then it will look like this:

calc/Makefile:6
 integer.c:6
 button.c:6

Sallyne zmeny v integer.c sa zobrazia v pracovnej kópii a vaše zmeny budú v súbore button.c. V
tomto prípade je text súboru Makefile rovnaký v revíziach 4, 5 aj 6 ale Subverzia označí vašu pracovnú
kópiu súboru Makefile z revíziou 6 čo naznačuje, že je stále aktuálna. Takže potom, čo ste si vyčistili
aktualizácie v koreni pracovnej kópie, bude to zodpovedať presnej jednej revízii v úložiskui.

2.3.4. Ako pracovné kópie vyhľadávajú úložiská.

Pre každý súbor v pracovnom adresári Subverzia zaznamenáva dve základné informácie .svn/v
administratívnej oblasti:

• na akej revízii sú založené vaše pracovné súbory (toto je nazývané pracovná revízia súborov), a

• čas, kedy bola naposledy aktualizovaná lokálna kópia v repoiztári.

Vzhľadom na tieto informácie pri komunikácii s úložiskom, Subverzia vie rozpoznať, v ktorom z
nasledujúcich štyroch stavoch sa nachádzajú rozpracované súbory:

Nezmenený a aktuálny
Súbor nebol zmenený v pracovnom adresáry ani neboli odovzdané zmeny do úložiska. Príkaz
odovzdať aj aktualizovať budú bez efektu.

Lokálne zmenené a aktuálne
Súbor bol zmenený v pracovom adresáry, ale neboli odovzdané žiadne zmeny do úložsika od
jeho základnej revízie. Miestne zmeny, ktoré neboli odovzdené do úložiska, môžu byť odovzdané
pomocou odovzdať. Príkaz aktualizovať nevykoná nič.

Nezmenené a zastaralé
Súbor nebol menení v pracovnom adresáry, ale bol zmenení v úložisku. Súbor by mal byť eventuálne
aktulizovaný, aby bol zhodný s aktuálnou revíziou. Príkaz odovdzať na tomto súbore neurobí nič, a
príkaz aktualizovať príme poslesné zmeny do pracovnej kópie.

Miestne zmenené a zastaralé
Súbory boli zmenené aj v pracovnej zložke aj v úložisku. Príkaz odovzdať súbor zlyhá s chybou
zastaralý. Súbor mal by byť najskôr aktualizovaný, príkaz aktualizovať sa pokúsi zlúčiť vydané
zmeny s lokálnymi zmenami. Ak subverzia nedokáže dokončiť presvedčivo zlúčenie týchto súborov
automaticky, nechá na užívateľovi, aby vyriešil tento problém sám.

2.4. Súhrn
Prebrali sme si niekoľko základných pojmov subverzie v tejto kapitole:

• Predstavili sme pojmy centrálneho úložiska, klientské pracovné kópie, a rad revíznych stromov
repozitára.

• Ukázali sme si niekoľko jednoduchých príkladov, ako dvaja spolupracovníci môžu použiť subverzie
na vydanie a prijímanie zmenie od seba navzájom, pomocou modelu ' kopírovať-upraviť-zlúčiť' '.

• Hovorili sme v skratke o tom, ako subverzia vyhľadáva a spravuje informácie v pracovnej kópii.

15

Kapitola 3. Úložisko
Nezáleží na toma, aký protokol používate pre prístup k svojim úložiskám, vždy je potrebné vytvoriť
aspoň jedeno úložisko. To sa môže vykonať s pomocou príkazového riadku subverzie klienta alebo s
TortoiseSVN.

Ak nemáte vytvorené úložisko so subverziou, je čas to urobiť teraz.

3.1. Vytvorenie úložiska

Môžete si vytvoriť úložisko s backend FSFS alebo starší formát Berkeley databázy (BDB). Formát
FSFS je všeobecne rýchlejší a jednoduchší na správu, a funguje aj v zdielaných sietiach aj vo
Windows 98 bez problémov. Formát BDB bolo kedysi považovaný za viac stabilný, pretože sa
používal veľmi dlhú dobu, ale odkedy FSFS sa používa v oblasti už niekoľko rokov, tento argument
je teraz skôr nepostačujúci. Prečítajte si Výber dátoveho skladu [http://svnbook.red-bean.com/en/1.5/
svn.reposadmin.planning.html#svn.reposadmin.basics.backends] v Subversion knihe pre viac informacií.

3.1.1. Vytvorenie úložiska pomocou príkazového radku.

1. Vytvorte prázdnu zložku s názvom SVN (napr. D:\SVN\), ktorý sa používa ako root pre všetky vaše
úložiská.

2. Vytvorte si ďalšiu zložku MyNewRepository v D:\SVN\.

3. Otvorte príkazový riadok (alebo DOS-Box), nastavte sa na D:\SVN\ a napíšte

svnadmin create --fs-type bdb MyNewRepository

alebo

svnadmin create --fs-type fsfs MyNewRepository

Teraz máte nové úložisko nachádzajúce sa vD:\SVN\MyNewRepository.

3.1.2. Vytváranie úložiska s TortoiseSVN

Obrázok 3.1. Menu TortoiseSVN pre neverzované zložky

1. Otvorte Windows prieskumník

2. Vytvorte novú zložku s názvom napr. SVNRepository

http://svnbook.red-bean.com/en/1.5/svn.reposadmin.planning.html#svn.reposadmin.basics.backends
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.planning.html#svn.reposadmin.basics.backends
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.planning.html#svn.reposadmin.basics.backends

Úložisko

16

3. Right-click na novo vytvorenú zložku a vyberte TortoiseSVN → vytvoriť úložisko tu...

Potom je úložisko vytvorené vo vnútri novej zložky. Neupravujte tieto súbory!!! Ak sa vyskytnú nejaké
chyby, preverte, aby zložka bola prázdna a nebola chránená proti zápisu.

Tip

TortoiseSVN už neponúka možnosť vytvoriť BDB úložiská, aj keď môžete stále používať
príkazový riadok klienta na ich vytvorenie. FSFS úložiská sú všeobecne jednoduhšie na
údržbu a taktiež má jednoduchšiu údržbu TortoiseSVN s kompatibilitou medzi rôznymi
BDB verziami.

Future versions of TortoiseSVN will not support file:// access to BDB repositories due
to these compatibility issues, although it will of course always support this repository format
when accessed via a server through the svn://, http:// or https:// protocols. For
this reason, we strongly recommend that any new repository which must be accessed using
file:// protocol is created as FSFS.

Samozrejme taktiež odporúčame, aby ste nepoužívali file:// prítup vôbec, okrem
lokálnych testov. Používanie servera je viacej bezpečnejšie a splahlivejšie pre viacerých ako
pre samotného vývojára.

3.1.3. Lokálny prístup do úložiska

Pre prístup k vašemu lokálnemu úložisku potrebujete cestu ku tej zložke. Len pre pirpomenutie,
Subversion očakáva, že všetky úložiská sa nachádzajú v file:///C:/SVNRepository/. Všimnite
si použitie lomítok pri zápise.

Pre prístup k úložisku, ktoré sa nachádza v zdielanej sieti môžete použit mapovanie disku, alebo použiť
UNC cestu. Pre UNC csety je formát zápisu file://ServerName/path/to/repos/. Všimnite
si, že na začiatku sú iba 2 lomítka.

Pred SVN 1.2, UNC cesty mali trochu nezrozumiteľný tvar file:///\ServerName/path/to/
repos. Tento zápis je stále podporovaný, ale nie je odporúčaný.

Varovanie

Nevytvárajte ani neotvárajte Berkeley DB úložisko v zdielanej sieti. Berkeley DB úložisko
nemôže existovať na vzdialenom súborovom systéme. Dokonca ani keď máte sieťovú
mechaniku zmenenú na drive letter. Ak sa pokúsite použiť Berkeley DB na sieťové
zdieľanie, výsledky sú nepredvídateľné - môžte hneď vidieť záhadné errors, alebo môžu
prejsť mesiace než objavíte, že vaša databáza úložiska je nepatrne poškodená.

3.1.4. Prístup k úložisku v zdielanej sieti.

Aj keď je teoreticky možne používať FSFS úložisko v zdielanej sieti s prístupom pre viacej užívateľov
s použitím file:// protokolu, nie je to odporúčané. Dôrazne vás od tohoto kroku odrádzame a
nepodporujeme takéto používanie.

Po prvé dávate užívatelovi právo na zápis do úložiska, takže hociktorý užívateľ môže náhodne zmazať
celé úložisko, alebo ho môže nejakým iným spôsobom spraviť nepoužiteľným.

Po druhé nie všetky protokoly na zdielanie súborov podporujú uzamykanie, ktoré Subversion vyžaduje,
takže si môžete nájsť svoje úložisko poškodené. Toto sa nemusí stať hneď, ale jedného dňa sa stane, že
dvaja užívatelia sa pokúsia otovriť úložiská v rovnakom čase.

Úložisko

17

Po tretie, prístupové práva musia byť nastavené. Môžete to obísť zdielaním pomocou Windowsu, ale
SAMBA je dosť zložitá na nastavenie.

file:// prístup je určený pre miestne zdielanie, pre jedného užívateľa iba a predovšetkým na testovanie
a ladenie. Keď chcete zdielať úložisko skutočne potrebujete nastaviť správne server a nie je to až také
tažke ako si myslíte. Prečítajte si Oddiel 3.5, “Pristupovanie k úložisku” pre pokyny pri výbere nastavenie
servera.

3.1.5. Návrh úložiska

Predtým ako importujete údaje do úložiska maly by ste najskôr porozmýšlať, ako ako budú usporadúvané.
Ak použijete jeden z odporučených návrhov, neskôr si uľahčíte mnohé veci.

Existuju určité štandardy a odporúčané spôsoby ako organizovať úložisko. Väčšinou stači vytvoriť
trunk adresár, v ktorom je “hlavná vetva”, branches adresár, ktorý obsahuje kópie vetiev a tags
adresár s obsahom menných kópii. Ak je v úložisku iba jeden projekt, tak stači vytvoriť tieto vrcholové
adresáre:

/trunk
/branches
/tags

Ak úložisko obsahuje viacero projektov, ľudia často indexujú ich vrstvy podla vetiev:

/trunk/paint
/trunk/calc
/branches/paint
/branches/calc
/tags/paint
/tags/calc

...alebo podľa projektov:

/paint/trunk
/paint/branches
/paint/tags
/calc/trunk
/calc/branches
/calc/tags

Idexovanie projektu má zmysel iba vtedy, kedy projekty nie sú podobné a každý je udržiavaný osobitne.
Pre podobné projekty, ktoré chcete spravovať v kope, alebo projekty, ktoré sú štandardne distribuované
v jednom balíčku je lepšie indexovať podľa vetiev. Tento spôsob ma iba jednu hlavnú líniu a a vzťahy
medzi podprojektami su jednoduchšie viditeľné.

Ak použijete ako vrcholové adresáre /trunk /tags /branches máte kópiu celej hlavnej línie pre
vetvy aj menovky a takáto štrktúra ponúka lepšie felxibility.

Pre nesúvisiace projekty môžete použiť oddelené úložiská. Keď odovzdáte zmeny, tak sa mení revízne
čislo celého úložiska, nie revizné číslo projektu. Pri zdielaní 2 roznych projektoch v jednom úložisku
môže nastať množstvo prerušení v revíznych číslach. Subversion a TortoiseSVN projekty sa tvaria ako
pod jendou adresou, ale ich úplná nezávislosť úložísk poskytuje nezávislý vývoj a žiadny zmätok v build
číslach.

Samozrejme nemusíte dodržiavať tieto štandardné návrhy. Môžete si vytvoriť hociaké rozčlenenie, ktoré
vyhovuje najviac vášmu tímu. Zapamätajte si, že akýkoľvek spôsob si vyberiete nie je to nemeniteľné.

Úložisko

18

Môžete si pretvoriť vaše úložisko kedykoľvek. Pretože vetvy a menovky sú bežné adresáre, TortoiseSVN
ich môže premenovať alebo presunúť ako vy chcete.

Zmena jedného návrhu na iný je len záležitosť, ktorú vykonáva server. Ak nemáte redi spôsob akým sú
organizované veci v úložisku, stači sa len pohrať s adresármi.

Takže, ak ešte nemáte vytvorenú základnú štruktúru adresaru vo vnútri úložiska mali by ste tak urobiť
teraz. Sú dva sposoby ako to docieliť. Ak chcete jednoduch vytvoriť /trunk /tags /branches
štruktúru, môžete použiť úložiskový prehliadač na vytvorenie 3 adresárov (3 oddelené odovzdávanie).
Ak chcete vytvoriť hlbšiu štruktúru, potom je jednoduhšie vytvoriť adresár na disku a importovať ho v
jednom odovzdaní nasledovne

1. vytvorte si na vašom hardisku prázdny adresár

2. vytvorte si požadovanú vrcholovú štruktúru adresárov vo vnútri toho adresára - nevkladajte tam žiadne
súbory zatiaľ!

3. import this structure into the repository via a right click on the folder and selecting TortoiseSVN →
Import... This will import your temp folder into the repository root to create the basic repository layout.

Meno adresára, ktorý importujete sa nukáže v úložisku, iba jeho obsah. Napríklad vytvorte adresárovú
štruktúru nasledovne:

C:\Temp\New\trunk
C:\Temp\New\branches
C:\Temp\New\tags

Imoprtujte C:\Temp\Newdo korena úložiska, ktroý vyzrá takto:

/trunk
/branches
/tags

3.2. Záloha úložiska

Aký koľvek druh uĺožiska použijete je životne dôležité, aby ste vykonávali pravidelné zálohy. Ak server
zlyhá, ste schopný používať poslednú verziu súborov, ale bez úložiska sú všetky predchádzajúce zmeny
navždy stratené.

Najjednoduchši (ale nie odporúčaný) spôsob je prekopírovať úložiskové adresáre na záložné miesto.
Avšak musíte si byť úplne istý, že nikto nepristupuje k dátam. V tomto význame prístup znamená hociaký
prístup všeobecne. DBD úložisko je vytvorené tak, že aj keď operácia vyžaduje iba čítať, tak sa pracuje
s úložiskom. Ak používate vaše úložisko počas kopírovania (otvorený prehliadač,WebSVN, atď.) záloha
je bezcenná.

Odporúčaná metóda je spustiť

svnadmin hotcopy path/to/repository path/to/backup --clean-logs

pre vytvorenie kópie vášho úložiska podľa bezpečnosti. Potom zálohujte kópiu. Voľba --clean-logs
nie je potrebná, ale odstráni prebytočné denníkové súbory pri zálohe BDB úložiska, ktoré môžu ušteriť
nejaké miesto.

svnadmin nástroj je nainštalovaný automaticky pri inštalácii Subversion príkazového riadku klienta.
Ak máte nainštalovaný príkazový riadok na počítači s Windowsom, najlepšie urobíte, ak si stahnete

Úložisko

19

inštalátor pre Windows verziu. Je zbalený omnoho efektívnejšie ako .zip ako verzia, takže stahujete
manšie množstvo dát a ponúka nastavenie umiestnenia inštalácie programu. Najnovšiu verziu Subversion
príkazového riadku klienta si možete stiahnuť z http://subversion.apache.org/getting.html.

3.3. Serverovské pripnuté (hook) skripty

A hook script is a program triggered by some repository event, such as the creation of a new revision
or the modification of an unversioned property. Each hook is handed enough information to tell what
that event is, what target(s) it's operating on, and the username of the person who triggered the event.
Depending on the hook's output or return status, the hook program may continue the action, stop it, or
suspend it in some way. Please refer to the chapter on Hook Scripts [http://svnbook.red-bean.com/en/1.5/
svn.reposadmin.create.html#svn.reposadmin.create.hooks] in the Subversion Book for full details about
the hooks which are implemented.

These hook scripts are executed by the server that hosts the repository. TortoiseSVN also allows you
to configure client side hook scripts that are executed locally upon certain events. See Oddiel 4.30.8,
“Klientské (pripnuté) skripty” for more information.

Sample hook scripts can be found in the hooks directory of the repository. These sample scripts are
suitable for Unix/Linux servers but need to be modified if your server is Windows based. The hook can
be a batch file or an executable. The sample below shows a batch file which might be used to implement
a pre-revprop-change hook.

rem Only allow log messages to be changed.
if "%4" == "svn:log" exit 0
echo Property '%4' cannot be changed >&2
exit 1

Note that anything sent to stdout is discarded. if you want a message to appear in the Commit Reject
dialog you must send it to stderr. In a batch file this is achieved using >&2

3.4. Checkout Links

If you want to make your Subversion repository available to others you may want to include a link
to it from your website. One way to make this more accessible is to include a checkout link for other
TortoiseSVN users.

When you install TortoiseSVN, it registers a new tsvn: protocol. When a TortoiseSVN user clicks on
such a link, the checkout dialog will open automatically with the repository URL already filled in.

To include such a link in your own html page, you need to add code which looks something like this:

Of course it would look even better if you included a suitable picture. You can use the TortoiseSVN logo
[http://tortoisesvn.tigris.org/images/TortoiseCheckout.png] or you can provide your own image.

You can also make the link point to a specific revision, for example

http://subversion.apache.org/getting.html
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://tortoisesvn.tigris.org/images/TortoiseCheckout.png
http://tortoisesvn.tigris.org/images/TortoiseCheckout.png

Úložisko

20

3.5. Pristupovanie k úložisku
To use TortoiseSVN (or any other Subversion client), you need a place where your repositories are
located. You can either store your repositories locally and access them using the file:// protocol or
you can place them on a server and access them with the http:// or svn:// protocols. The two server
protocols can also be encrypted. You use https:// or svn+ssh://, or you can use svn:// with
SASL.

If you are using a public hosting service such as Google Code [http://code.google.com/hosting/] or your
server has already been setup by someone else then there is nothing else you need to do. Move along to
Kapitola 4, Sprievodca denného použitia.

If you don't have a server and you work alone, or if you are just evaluating Subversion and TortoiseSVN
in isolation, then local repositories are probably your best choice. Just create a repository on your own
PC as described earlier in Kapitola 3, Úložisko. You can skip the rest of this chapter and go directly to
Kapitola 4, Sprievodca denného použitia to find out how to start using it.

If you were thinking about setting up a multi-user repository on a network share, think again. Read
Oddiel 3.1.4, “Prístup k úložisku v zdielanej sieti.” to find out why we think this is a bad idea. Setting up
a server is not as hard as it sounds, and will give you better reliability and probably speed too.

The next sections are a step-by-step guide on how you can set up such a server on a Windows machine.
Of course you can also set up a server on a Linux machine, but that is beyond the scope of this guide.
More detailed information on the Subversion server options, and how to choose the best architecture
for your situation, can be found in the Subversion book under Server Configuration [http://svnbook.red-
bean.com/en/1.5/svn.serverconfig.html].

3.6. Svnserve Based Server

3.6.1. Úvod

Subversion includes Svnserve - a lightweight stand-alone server which uses a custom protocol over an
ordinary TCP/IP connection. It is ideal for smaller installations, or where a full blown Apache server
cannot be used.

In most cases svnserve is easier to setup and runs faster than the Apache based server, although it doesn't
have some of the advanced features. And now that SASL support is included it is easy to secure as well.

3.6.2. Inštalácia svnserve

1. Get the latest version of Subversion from http://subversion.apache.org/getting.html. Alternatively get
a pre-packaged installer from CollabNet at http://www.collab.net/downloads/subversion. This installer
will setup svnserve as a Windows service, and also includes some of the tools you need if you are
going to use SASL for security.

2. If you already have a version of Subversion installed, and svnserve is running, you will need to stop
it before continuing.

3. Run the Subversion installer. If you run the installer on your server (recommended) you can skip step 4.

4. Open the windows-explorer, go to the installation directory of Subversion (usually C:
\Program Files\Subversion) and in the bin directory, find the files svnserve.exe,
intl3_svn.dll, libapr.dll, libapriconv.dll, libapriutil.dll, libdb*.dll,
libeay32.dll and ssleay32.dll - copy these files, or just copy all of the bin directory, into
a directory on your server e.g. c:\svnserve

http://code.google.com/hosting/
http://code.google.com/hosting/
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.html
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.html
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.html
http://subversion.apache.org/getting.html
http://www.collab.net/downloads/subversion

Úložisko

21

3.6.3. Running svnserve

Now that svnserve is installed, you need it running on your server. The simplest approach is to run the
following from a DOS shell or create a windows shortcut:

svnserve.exe --daemon

svnserve will now start waiting for incoming requests on port 3690. The --daemon switch tells svnserve
to run as a daemon process, so it will always exist until it is manually terminated.

If you have not yet created a repository, follow the instructions given with the Apache server setup
Oddiel 3.7.4, “Konfigurácia”.

To test that svnserve is working, use TortoiseSVN → Repo-Browser to view a repository.

Assuming your repository is located in c:\repos\TestRepo, and your server is called localhost,
enter:

svn://localhost/repos/TestRepo

when prompted by the repo browser.

You can also increase security and save time entering URLs with svnserve by using the --root switch to
set the root location and restrict access to a specified directory on the server:

svnserve.exe --daemon --root drive:\path\to\repository\root

Using the previous test as a guide, svnserve would now run as:

svnserve.exe --daemon --root c:\repos

And in TortoiseSVN our repo-browser URL is now shortened to:

svn://localhost/TestRepo

Note that the --root switch is also needed if your repository is located on a different partition or drive
than the location of svnserve on your server.

Svnserve will service any number of repositories. Just locate them somewhere below the root folder you
just defined, and access them using a URL relative to that root.

Varovanie

Do not create or access a Berkeley DB repository on a network share. It cannot exist on a
remote filesystem. Not even if you have the network drive mapped to a drive letter. If you
attempt to use Berkeley DB on a network share, the results are unpredictable - you may see
mysterious errors right away, or it may be months before you discover that your repository
database is subtly corrupted.

3.6.3.1. Spustiť svnserver ako servis

Running svnserve as a user is usually not the best way. It means always having a user logged in on your
server, and remembering to restart it after a reboot. A better way is to run svnserve as a windows service.
Starting with Subversion 1.4, svnserve can be installed as a native windows service.

Úložisko

22

To install svnserve as a native windows service, execute the following command all on one line to create
a service which is automatically started when windows starts.

sc create svnserve binpath= "c:\svnserve\svnserve.exe --service
 --root c:\repos" displayname= "Subversion" depend= tcpip
 start= auto

If any of the paths include spaces, you have to use (escaped) quotes around the path, like this:

sc create svnserve binpath= "
 \"C:\Program Files\Subversion\bin\svnserve.exe\"
 --service --root c:\repos" displayname= "Subversion"
 depend= tcpip start= auto

You can also add a description after creating the service. This will show up in the Windows Services
Manager.

sc description svnserve "Subversion server (svnserve)"

Note the rather unusual command line format used by sc. In the key= value pairs there must be no
space between the key and the = but there must be a space before the value.

Tip

Microsoft now recommend services to be run as under either the Local
Service or Network Service account. Refer to The Services and Service
Accounts Security Planning Guide [http://www.microsoft.com/technet/security/topics/
serversecurity/serviceaccount/default.mspx]. To create the service under the Local Service
account, append the following to the example above.

obj= "NT AUTHORITY\LocalService"

Note that you would have to give the Local Service account appropriate rights to both
Subversion and your repositories, as well as any applications which are used by hook scripts.
The built-in group for this is called "LOCAL SERVICE".

Once you have installed the service, you need to go to the services manager to start it (this time only; it
will start automatically when the server reboots).

For more detailed information, refer to Windows Service Support for Svnserve [http://svn.collab.net/repos/
svn/trunk/notes/windows-service.txt].

If you installed an earlier version of svnserve using the SVNService wrapper, and you now want to
use the native support instead, you will need to unregister the wrapper as a service (remember to stop the
service first!). Simply use the command

svnservice -remove

to remove the service registry entry.

3.6.4. Základná auhentifikácia so svnserve

The default svnserve setup provides anonymous read-only access. This means that you can use an
svn:// URL to checkout and update, or use the repo-browser in TortoiseSVN to view the repository,
but you won't be able to commit any changes.

http://www.microsoft.com/technet/security/topics/serversecurity/serviceaccount/default.mspx
http://www.microsoft.com/technet/security/topics/serversecurity/serviceaccount/default.mspx
http://www.microsoft.com/technet/security/topics/serversecurity/serviceaccount/default.mspx
http://www.microsoft.com/technet/security/topics/serversecurity/serviceaccount/default.mspx
http://svn.collab.net/repos/svn/trunk/notes/windows-service.txt
http://svn.collab.net/repos/svn/trunk/notes/windows-service.txt
http://svn.collab.net/repos/svn/trunk/notes/windows-service.txt

Úložisko

23

To enable write access to a repository, you need to edit the conf/svnserve.conf file in your
repository directory. This file controls the configuration of the svnserve daemon, and also contains useful
documentation.

You can enable anonymous write access by simply setting:

[general]
anon-access = write

However, you will not know who has made changes to a repository, as the svn:author property will
be empty. You will also be unable to control who makes changes to a repository. This is a somewhat
risky setup!

One way to overcome this is to create a password database:

[general]
anon-access = none
auth-access = write
password-db = userfile

Where userfile is a file which exists in the same directory as svnserve.conf. This file can live
elsewhere in your file system (useful for when you have multiple repositories which require the same
access rights) and may be referenced using an absolute path, or a path relative to the conf directory.
If you include a path, it must be written /the/unix/way. Using \ or drive letters will not work. The
userfile should have a structure of:

[users]
username = password
...

This example would deny all access for unauthenticated (anonymous) users, and give read-write access
to users listed in userfile.

Tip

If you maintain multiple repositories using the same password database,
the use of an authentication realm will make life easier for users, as
TortoiseSVN can cache your credentials so that you only have to enter them
once. More information can be found in the Subversion book, specifically
in the sections Create a 'users' file and realm [http://svnbook.red-bean.com/
en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.auth.users] and Client
Credentials Caching [http://svnbook.red-bean.com/en/1.5/
svn.serverconfig.netmodel.html#svn.serverconfig.netmodel.credcache]

3.6.5. Lepšie zabezpečenie pomocou SASL

3.6.5.1. Čo je SASL?

The Cyrus Simple Authentication and Security Layer is open source software written by Carnegie Mellon
University. It adds generic authentication and encryption capabilities to any network protocol, and as of
Subversion 1.5 and later, both the svnserve server and TortoiseSVN client know how to make use of
this library.

For a more complete discussion of the options available, you should look at the
Subversion book in the section Using svnserve with SASL [http://svnbook.red-bean.com/en/1.5/

http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.auth.users
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.auth.users
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.auth.users
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.netmodel.html#svn.serverconfig.netmodel.credcache
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.netmodel.html#svn.serverconfig.netmodel.credcache
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.netmodel.html#svn.serverconfig.netmodel.credcache
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.netmodel.html#svn.serverconfig.netmodel.credcache
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.sasl
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.sasl

Úložisko

24

svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.sasl]. If you are just looking for a simple way
to set up secure authentication and encryption on a Windows server, so that your repository can be
accessed safely over the big bad Internet, read on.

3.6.5.2. SASL authentifikácia

To activate specific SASL mechanisms on the server, you'll need to do three things. First, create a [sasl]
section in your repository's svnserve.conf file, with this key-value pair:

use-sasl = true

Second, create a file called svn.conf in a convenient location - typically in the directory where
subversion is installed.

Thirdly, create two new registry entries to tell SASL where to find things. Create a registry key
named [HKEY_LOCAL_MACHINE\SOFTWARE\Carnegie Mellon\Project Cyrus\SASL
Library] and place two new string values inside it: SearchPath set to the directory path containing
the sasl*.dll plug-ins (normally in the Subversion install directory), and ConfFile set to the
directory containing the svn.conf file. If you used the CollabNet installer, these registry keys will
already have been created for you.

Edit the svn.conf file to contain the following:

pwcheck_method: auxprop
auxprop_plugin: sasldb
mech_list: DIGEST-MD5
sasldb_path: C:\TortoiseSVN\sasldb

The last line shows the location of the authentication database, which is a file called sasldb. This could
go anywhere, but a convenient choice is the repository parent path. Make sure that the svnserve service
has read access to this file.

If svnserve was already running, you will need to restart it to ensure it reads the updated configuration.

Now that everything is set up, all you need to do is create some users and passwords. To do this you
need the saslpasswd2 program. If you used the CollabNet installer, that program will be in the install
directory. Use a command something like this:

saslpasswd2 -c -f C:\TortoiseSVN\sasldb -u realm username

The -f switch gives the database location, realm must be the same as the value you defined in your
repository's svnserve.conf file, and username is exactly what you expect it to be. Note that the realm
is not allowed to contain space characters.

You can list the usernames stored in the database using the sasldblistusers2 program.

3.6.5.3. SASL Encryption

To enable or disable different levels of encryption, you can set two values in your repository's
svnserve.conf file:

[sasl]
use-sasl = true
min-encryption = 128
max-encryption = 256

http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.sasl

Úložisko

25

The min-encryption and max-encryption variables control the level of encryption demanded by
the server. To disable encryption completely, set both values to 0. To enable simple checksumming of data
(i.e., prevent tampering and guarantee data integrity without encryption), set both values to 1. If you wish
to allow (but not require) encryption, set the minimum value to 0, and the maximum value to some bit-
length. To require encryption unconditionally, set both values to numbers greater than 1. In our previous
example, we require clients to do at least 128-bit encryption, but no more than 256-bit encryption.

3.6.6. Authentication with svn+ssh

Another way to authenticate users with a svnserve based server is to use a secure shell (SSH) to tunnel
requests through. It is not as simple to set up as SASL, but it may be useful is some cases.

With this approach, svnserve is not run as a daemon process, rather, the secure shell starts svnserve for
you, running it as the SSH authenticated user. To enable this, you need a secure shell daemon on your
server.

A basic method for setting up your server is given in Dodatok G, Securing Svnserve using SSH. You can
find other SSH topics within the FAQ by searching for “SSH”.

Further information about svnserve can be found in the Version Control with Subversion [http://
svnbook.red-bean.com].

3.6.7. Path-based Authorization with svnserve

Starting with Subversion 1.3, svnserve supports the same mod_authz_svn path-based authorization
scheme that is available with the Apache server. You need to edit the conf/svnserve.conf file in
your repository directory and add a line referring to your authorization file.

[general]
authz-db = authz

Here, authz is a file you create to define the access permissions. You can use a separate file for
each repository, or you can use the same file for several repositories. Read Oddiel 3.7.6, “Path-Based
Authorization” for a description of the file format.

3.7. Server na báze Apache

3.7.1. Úvod

The most flexible of all possible server setups for Subversion is the Apache based one. Although a bit
more complicated to set up, it offers benefits that other servers cannot:

WebDAV
The Apache based Subversion server uses the WebDAV protocol which is supported by many other
programs as well. You could e.g. mount such a repository as a “Web folder” in the Windows explorer
and then access it like any other folder in the file system.

Prezeranie úložiska
You can point your browser to the URL of your repository and browse the contents of it without
having a Subversion client installed. This gives access to your data to a much wider circle of users.

Authentifikácia
You can use any authentication mechanism Apache supports, including SSPI and LDAP.

Bezpečnosť
Odkedy je Apache veľmi stabilný a bezpečný, získate rovnakú bezpečnosť pre vaše úložisko.
Zahrňuje to aj kryptovanie pomocou SSL.

http://svnbook.red-bean.com
http://svnbook.red-bean.com
http://svnbook.red-bean.com

Úložisko

26

3.7.2. Installing Apache

The first thing you need before installing Apache is a computer with Windows 2000, Windows XP+SP1,
Windows 2003, Vista or Server 2008.

Varovanie

Please note that Windows XP without the service pack 1 will lead to bogus network data
and could therefore corrupt your repository!

1. Download the latest version of the Apache web server from http://httpd.apache.org/download.cgi.
Make sure that you download the version 2.2.x - the version 1.3.xx won't work!

The msi installer for Apache can be found by clicking on other files, then browse to
binaries/win32. You may want to choose the msi file apache-2.2.x-win32-x86-
openssl-0.9.x.msi (the one that includes OpenSSL).

2. Once you have the Apache2 installer you can double click on it and it will guide you through the
installation process. Make sure that you enter the server-URL correctly (if you don't have a DNS
name for your server just enter the IP-address). I recommend to install Apache for All Users, on
Port 80, as a Service. Note: if you already have IIS or any other program running which listens on
port 80 the installation might fail. If that happens, go to the programs directory, \Apache Group
\Apache2\conf and locate the file httpd.conf. Edit that file so that Listen 80 is changed to
a free port, e.g. Listen 81. Then restart the installation - this time it should finish without problems.

3. Now test if the Apache web server is running correctly by pointing your web browser to http://
localhost/ - a preconfigured Website should show up.

Výstraha

If you decide to install Apache as a service, be warned that by default it will run as the local
system account. It would be a more secure practice for you to create a separate account for
Apache to run as.

Make sure that the account on the server that Apache is running as has an explicit entry
in the repository directory's access control list (right-click directory | properties | security),
with full control. Otherwise, users will not be able to commit their changes.

Even if Apache runs as local system, you still need such an entry (which will be the
SYSTEM account in this case).

If Apache does not have this permission set up, your users will get “Access denied” error
messages, which show up in the Apache error log as error 500.

3.7.3. Inštalácia subversion

1. Download the latest version of the Subversion Win32 binaries for Apache. Be sure to get the
right version to integrate with your version of Apache, otherwise you will get an obscure error
message when you try to restart. If you have Apache 2.2.x go to http://subversion.tigris.org/servlets/
ProjectDocumentList?folderID=8100.

2. Run the Subversion installer and follow the instructions. If the Subversion installer recognized that
you've installed Apache, then you're almost done. If it couldn't find an Apache server then you have
to do some additional steps.

3.

Using the windows explorer, go to the installation directory of Subversion (usually c:
\program files\Subversion) and find the files /httpd/mod_dav_svn.so and

http://httpd.apache.org/download.cgi
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=8100
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=8100

Úložisko

27

mod_authz_svn.so. Copy these files to the Apache modules directory (usually c:\program
files\apache group\apache2\modules).

4. Copy the file /bin/libdb*.dll and /bin/intl3_svn.dll from the Subversion installation
directory to the Apache bin directory.

5. Edit Apache's configuration file (usually C:\Program Files\Apache Group
\Apache2\conf\httpd.conf) with a text editor such as Notepad and make the following
changes:

Uncomment (remove the '#' mark) the following lines:

#LoadModule dav_fs_module modules/mod_dav_fs.so
#LoadModule dav_module modules/mod_dav.so

Add the following two lines to the end of the LoadModule section.

LoadModule dav_svn_module modules/mod_dav_svn.so
LoadModule authz_svn_module modules/mod_authz_svn.so

3.7.4. Konfigurácia

Teraz máte nastavený Apache a Subversion, ale Apache ešte nevie ako __handle__ Subversion klientov
ako je TortoiseSVN. Aby Apache vedel, ktorá URL by mala byť použitá pre uložiská Subversion
musíte upraviť konfiguračný súbor (typicky umiestnený v c:\program files\apache group
\apache2\conf\httpd.conf) ľubovoľným textovým editorom (napr.: Notepad):

1. At the end of the config file add the following lines:

<Location /svn>
 DAV svn
 SVNListParentPath on
 SVNParentPath D:\SVN
 #SVNIndexXSLT "/svnindex.xsl"
 AuthType Basic
 AuthName "Subversion repositories"
 AuthUserFile passwd
 #AuthzSVNAccessFile svnaccessfile
 Require valid-user
</Location>

This configures Apache so that all your Subversion repositories are physically located below D:\SVN.
The repositories are served to the outside world from the URL: http://MyServer/svn/ .
Access is restricted to known users/passwords listed in the passwd file.

2. To create the passwd file, open the command prompt (DOS-Box) again, change to the apache2
folder (usually c:\program files\apache group\apache2) and create the file by entering

bin\htpasswd -c passwd <username>

This will create a file with the name passwd which is used for authentication. Additional users can
be added with

bin\htpasswd passwd <username>

3. Opäť reštartuje Apache server.

Úložisko

28

4. Nasmerujte prehliadač http://MyServer/svn/MyNewRepository (kde
MyNewRepository je meno úložiska Subversion, ktoré ste predtím vytvorili). Ak je všetko v
poriadku mali by ste byť opýtaný na meho a heslo, potom môžete prezerať obsah vašeho úložiska.

A short explanation of what you just entered:

Nastavenie Vysvetlenie

<Location /svn> znamená, že úložiská Subversion sú prístupné z URL http://
MyServer/svn/

DAV svn povie Apache, ktorý modul bude zodpovedný za danú URL - v
tomto prípade Subversion.

SVNListParentPath on Pre Subversion 1.3 a novšie, tento parameter povolí zobrazenie
všetkých prístupný úložísk pod SVNParentPath.

SVNParentPath D:\SVN povie Subversion, aby hľadal úložiská pod D:\SVN

SVNIndexXSLT "/
svnindex.xsl"

Použité, aby prehliadanie vo webovom prehliadači vyzeralo krajšie.

AuthType Basic aktivuje základnú autentifikáciu, ako Meno/heslo

AuthName "Subversion
repositories"

is used as an information whenever an authentication dialog pops
up to tell the user what the authentication is for

AuthUserFile passwd určuje, ktorý súbor hesiel má byť použitý pre autentifikáciu

AuthzSVNAccessFile Location of the Access file for paths inside a Subversion repository

Require valid-user specifies that only users who entered a correct username/password
are allowed to access the URL

Tabuľka 3.1. Apache httpd.conf Settings

But that's just an example. There are many, many more possibilities of what you can do with the Apache
web server.

• If you want your repository to have read access for everyone but write access only for specific users
you can change the line

Require valid-user

to

<LimitExcept GET PROPFIND OPTIONS REPORT>
Require valid-user
</LimitExcept>

• Using a passwd file limits and grants access to all of your repositories as a unit. If you want more
control over which users have access to each folder inside a repository you can uncomment the line

#AuthzSVNAccessFile svnaccessfile

and create a Subversion access file. Apache will make sure that only valid users are able to access your
/svn location, and will then pass the username to Subversion's AuthzSVNAccessFile module so
that it can enforce more granular access based upon rules listed in the Subversion access file. Note that
paths are specified either as repos:path or simply path. If you don't specify a particular repository,

Úložisko

29

that access rule will apply to all repositories under SVNParentPath. The format of the authorization-
policy file used by mod_authz_svn is described in Oddiel 3.7.6, “Path-Based Authorization”

• To make browsing the repository with a web browser 'prettier', uncomment the line

#SVNIndexXSLT "/svnindex.xsl"

and put the files svnindex.xsl, svnindex.css and menucheckout.ico in your document
root directory (usually C:/Program Files/Apache Group/Apache2/htdocs). The
directory is set with the DocumentRoot directive in your Apache config file.

You can get those three files directly from our source repository at http://tortoisesvn.googlecode.com/
svn/trunk/contrib/svnindex. (Oddiel 3, “TortoiseSVN je zdarma!” explains how to access the
TortoiseSVN source repository).

The XSL file from the TortoiseSVN repository has a nice gimmick: if you browse the repository with
your web browser, then every folder in your repository has an icon on the right shown. If you click on
that icon, the TortoiseSVN checkout dialog is started for this URL.

3.7.5. Multiple Repositories

If you used the SVNParentPath directive then you don't have to change the Apache config file every
time you add a new Subversion repository. Simply create the new repository under the same location as
the first repository and you're done! In my company I have direct access to that specific folder on the
server via SMB (normal windows file access). So I just create a new folder there, run the TortoiseSVN
command TortoiseSVN → Create repository here... and a new project has a home...

If you are using Subversion 1.3 or later, you can use the SVNListParentPath on directive to allow
Apache to produce a listing of all available projects if you point your browser at the parent path rather
than at a specific repository.

3.7.6. Path-Based Authorization

The mod_authz_svn module permits fine-grained control of access permissions based on user names
and repository paths. This is available with the Apache server, and as of Subversion 1.3 it is available
with svnserve as well.

An example file would look like this:

[groups]
admin = john, kate
devteam1 = john, rachel, sally
devteam2 = kate, peter, mark
docs = bob, jane, mike
training = zak
Default access rule for ALL repositories
Everyone can read, admins can write, Dan German is excluded.
[/]
* = r
@admin = rw
dangerman =
Allow developers complete access to their project repos
[proj1:/]
@devteam1 = rw
[proj2:/]

http://tortoisesvn.googlecode.com/svn/trunk/contrib/svnindex
http://tortoisesvn.googlecode.com/svn/trunk/contrib/svnindex

Úložisko

30

@devteam2 = rw
[bigproj:/]
@devteam1 = rw
@devteam2 = rw
trevor = rw
Give the doc people write access to all the docs folders
[/trunk/doc]
@docs = rw
Give trainees write access in the training repository only
[TrainingRepos:/]
@training = rw

Note that checking every path can be an expensive operation, particularly in the case of the revision log.
The server checks every changed path in each revision and checks it for readability, which can be time-
consuming on revisions which affect large numbers of files.

Authentication and authorization are separate processes. If a user wants to gain access to a repository
path, she has to meet both, the usual authentication requirements and the authorization requirements of
the access file.

3.7.7. Authentication With a Windows Domain

As you might have noticed you need to make a username/password entry in the passwd file for each
user separately. And if (for security reasons) you want your users to periodically change their passwords
you have to make the change manually.

But there's a solution for that problem - at least if you're accessing the repository from inside a LAN with
a windows domain controller: mod_auth_sspi!

The original SSPI module was offered by Syneapps including source code. But the development for it
has been stopped. But don't despair, the community has picked it up and improved it. It has a new home
on SourceForge [http://sourceforge.net/projects/mod-auth-sspi/].

• Download the module which matches your apache version, then copy the file mod_auth_sspi.so
into the Apache modules folder.

• Edit the Apache config file: add the line

LoadModule sspi_auth_module modules/mod_auth_sspi.so

to the LoadModule section. Make sure you insert this line before the line

LoadModule auth_module modules/mod_auth.so

• To make the Subversion location use this type of authentication you have to change the line

AuthType Basic

to

AuthType SSPI

also you need to add

http://sourceforge.net/projects/mod-auth-sspi/
http://sourceforge.net/projects/mod-auth-sspi/

Úložisko

31

SSPIAuth On
SSPIAuthoritative On
SSPIDomain <domaincontroller>
SSPIOmitDomain on
SSPIUsernameCase lower
SSPIPerRequestAuth on
SSPIOfferBasic On

within the <Location /svn> block. If you don't have a domain controller, leave the name of the
domain control as <domaincontroller>.

Note that if you are authenticating using SSPI, then you don't need the AuthUserFile line to define
a password file any more. Apache authenticates your username and password against your windows
domain instead. You will need to update the users list in your svnaccessfile to reference DOMAIN
\username as well.

Dôležité

The SSPI authentication is only enabled for SSL secured connections (https). If you're only
using normal http connections to your server, it won't work.

To enable SSL on your server, see the chapter: Oddiel 3.7.9, “Zabezpečenie servera
pomocou SSL”

Tip

Subversion AuthzSVNAccessFile files are case sensitive in regard to user names
(JUser is different from juser).

In Microsoft's world, Windows domains and user names are not case sensitive. Even so,
some network administrators like to create user accounts in CamelCase (e.g. JUser).

This difference can bite you when using SSPI authentication as the windows domain and
user names are passed to Subversion in the same case as the user types them in at the prompt.
Internet Explorer often passes the username to Apache automatically using whatever case
the account was created with.

The end result is that you may need at least two entries in your AuthzSVNAccessFile
for each user -- a lowercase entry and an entry in the same case that Internet Explorer passes
to Apache. You will also need to train your users to also type in their credentials using lower
case when accessing repositories via TortoiseSVN.

Apache's Error and Access logs are your best friend in deciphering problems such as
these as they will help you determine the username string passed onto Subversion's
AuthzSVNAccessFile module. You may need to experiment with the exact format of
the user string in the svnaccessfile (e.g. DOMAIN\user vs. DOMAIN//user) in
order to get everything working.

3.7.8. Multiple Authentication Sources

It is also possible to have more than one authentication source for your Subversion repository. To do this,
you need to make each authentication type non-authoritative, so that Apache will check multiple sources
for a matching username/password.

A common scenario is to use both Windows domain authentication and a passwd file, so that you can
provide SVN access to users who don't have a Windows domain login.

Úložisko

32

• To enable both Windows domain and passwd file authentication, add the following entries within the
<Location> block of your Apache config file:

AuthBasicAuthoritative Off
SSPIAuthoritative Off

Here is an example of the full Apache configuration for combined Windows domain and passwd file
authentication:

<Location /svn>
 DAV svn
 SVNListParentPath on
 SVNParentPath D:\SVN

 AuthName "Subversion repositories"
 AuthzSVNAccessFile svnaccessfile.txt

NT Domain Logins.
 AuthType SSPI
 SSPIAuth On
 SSPIAuthoritative Off
 SSPIDomain <domaincontroller>
 SSPIOfferBasic On

Htpasswd Logins.
 AuthType Basic
 AuthBasicAuthoritative Off
 AuthUserFile passwd

 Require valid-user
</Location>

3.7.9. Zabezpečenie servera pomocou SSL

Even though Apache 2.2.x has OpenSSL support, it is not activated by default. You need to activate this
manually.

1. In the apache config file, uncomment the lines:

#LoadModule ssl_module modules/mod_ssl.so

and at the bottom

#Include conf/extra/httpd-ssl.conf

then change the line (on one line)

SSLMutex "file:C:/Program Files/Apache Software Foundation/\
Apache2.2/logs/ssl_mutex"

to

SSLMutex default

Úložisko

33

2. Next you need to create an SSL certificate. To do that open a command prompt (DOS-Box) and
change to the Apache folder (e.g. C:\program files\apache group\apache2) and type
the following command:

bin\openssl req -config conf\openssl.cnf -new -out my-server.csr

You will be asked for a passphrase. Please don't use simple words but whole sentences, e.g. a part of
a poem. The longer the phrase the better. Also you have to enter the URL of your server. All other
questions are optional but we recommend you fill those in too.

Normally the privkey.pem file is created automatically, but if it isn't you need to type this command
to generate it:

bin\openssl genrsa -out conf\privkey.pem 2048

Next type the commands

bin\openssl rsa -in conf\privkey.pem -out conf\server.key

and (on one line)

bin\openssl req -new -key conf\server.key -out conf\server.csr \
-config conf\openssl.cnf

and then (on one line)

bin\openssl x509 -in conf\server.csr -out conf\server.crt
 -req -signkey conf\server.key -days 4000

This will create a certificate which will expire in 4000 days. And finally enter (on one line):

bin\openssl x509 -in conf\server.cert -out conf\server.der.crt
 -outform DER

These commands created some files in the Apache conf folder (server.der.crt, server.csr,
server.key, .rnd, privkey.pem, server.cert).

3. Reštartujte Apache server.

4. Point your browser to https://servername/svn/project ...

SSL a Internet Explorer

If you're securing your server with SSL and use authentication against a windows domain
you will encounter that browsing the repository with the Internet Explorer doesn't work
anymore. Don't worry - this is only the Internet Explorer not able to authenticate. Other
browsers don't have that problem and TortoiseSVN and any other Subversion client are still
able to authenticate.

If you still want to use IE to browse the repository you can either:

• define a separate <Location /path> directive in the Apache config file, and add
the SSPIBasicPreferred On. This will allow IE to authenticate again, but other
browsers and Subversion won't be able to authenticate against that location.

Úložisko

34

• Offer browsing with unencrypted authentication (without SSL) too. Strangely IE doesn't
have any problems with authenticating if the connection is not secured with SSL.

• In the SSL "standard" setup there's often the following statement in Apache's virtual SSL
host:

SetEnvIf User-Agent ".*MSIE.*" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0

There are (were?) good reasons for this configuration, see http://www.modssl.org/
docs/2.8/ssl_faq.html#ToC49 But if you want NTLM authentication you have to use
keepalive. If You uncomment the whole SetEnvIf you should be able to
authenticate IE with windows authentication over SSL against the Apache on Win32 with
included mod_auth_sspi.

Forcing SSL access

When you've set up SSL to make your repository more secure, you might want to disable
the normal access via non-SSL (http) and only allow https access. To do this, you have to
add another directive to the Subversion <Location> block: SSLRequireSSL.

An example <Location> block would look like this:

<Location /svn>
 DAV svn
 SVNParentPath D:\SVN
 SSLRequireSSL
 AuthType Basic
 AuthName "Subversion repositories"
 AuthUserFile passwd
 #AuthzSVNAccessFile svnaccessfile
 Require valid-user
</Location>

3.7.10. Using client certificates with virtual SSL hosts

Sent to the TortoiseSVN mailing list by Nigel Green. Thanks!

In some server configurations you may need to setup a single server containing 2 virtual SSL hosts: The
first one for public web access, with no requirement for a client certificate. The second one to be secure
with a required client certificate, running a Subversion server.

Adding an SSLVerifyClient Optional directive to the per-server section of the Apache
configuration (i.e. outside of any VirtualHost and Directory blocks) forces Apache to request a
client Certificate in the initial SSL handshake. Due to a bug in mod_ssl it is essential that the certificate
is requested at this point as it does not work if the SSL connection is re-negotiated.

The solution is to add the following directive to the virtual host directory that you want to lock down
for Subversion:

SSLRequire %{SSL_CLIENT_VERIFY} eq "SUCCESS"

This directive grants access to the directory only if a client certificate was received and verified
successfully.

http://www.modssl.org/docs/2.8/ssl_faq.html#ToC49
http://www.modssl.org/docs/2.8/ssl_faq.html#ToC49

Úložisko

35

To summarise, the relevant lines of the Apache configuration are:

SSLVerifyClient Optional

Virtual host configuration for the PUBLIC host
(not requiring a certificate)

<VirtualHost 127.0.0.1:443>
 <Directory "pathtopublicfileroot">
 </Directory>
</VirtualHost>

Virtual host configuration for SUBVERSION
(requiring a client certificate)
<VirtualHost 127.0.0.1:443>
 <Directory "subversion host root path">
 SSLRequire %{SSL_CLIENT_VERIFY} eq "SUCCESS"
 </Directory>

 <Location /svn>
 DAV svn
 SVNParentPath /pathtorepository
 </Location>
</VirtualHost>

36

Kapitola 4. Sprievodca denného
použitia

This document describes day to day usage of the TortoiseSVN client. It is not an introduction to version
control systems, and not an introduction to Subversion (SVN). It is more like a place you may turn to
when you know approximately what you want to do, but don't quite remember how to do it.

If you need an introduction to version control with Subversion, then we recommend you read the fantastic
book: Version Control with Subversion [http://svnbook.red-bean.com/].

This document is also a work in progress, just as TortoiseSVN and Subversion are. If you find any
mistakes, please report them to the mailing list so we can update the documentation. Some of the
screenshots in the Daily Use Guide (DUG) might not reflect the current state of the software. Please
forgive us. We're working on TortoiseSVN in our free time.

In order to get the most out of the Daily Use Guide:

• Už by ste mali maž nainštalovanú TortoiseSVN.

• You should be familiar with version control systems.

• You should know the basics of Subversion.

• You should have set up a server and/or have access to a Subversion repository.

4.1. Začíname

4.1.1. Prekrývané ikony

Obrázok 4.1. Explorer showing icon overlays

One of the most visible features of TortoiseSVN is the icon overlays which appear on files in your
working copy. These show you at a glance which of your files have been modified. Refer to Oddiel 4.7.1,
“Prekrývané ikony” to find out what the different overlays represent.

4.1.2. Kontextové Menu

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

Sprievodca denného použitia

37

Obrázok 4.2. Context menu for a directory under version control

All TortoiseSVN commands are invoked from the context menu of the windows explorer. Most are
directly visible, when you right click on a file or folder. The commands that are available depend on
whether the file or folder or its parent folder is under version control or not. You can also see the
TortoiseSVN menu as part of the Explorer file menu.

Tip

Some commands which are very rarely used are only available in the extended context
menu. To bring up the extended context menu, hold down the Shift key when you right-
click.

In some cases you may see several TortoiseSVN entries. This is not a bug!

Sprievodca denného použitia

38

Obrázok 4.3. Explorer file menu for a shortcut in a versioned folder

This example is for an unversioned shortcut within a versioned folder, and in the Explorer file menu there
are three entries for TortoiseSVN. One is for the folder, one for the shortcut itself, and the third for the
object the shortcut is pointing to. To help you distinguish between them, the icons have an indicator in
the lower right corner to show whether the menu entry is for a file, a folder, a shortcut or for multiple
selected items.

If you are using Windows 2000 you will find that the context menus are shown as plain text, without the
menu icons shown above. We are aware that this was working in previous versions, but Microsoft has
changed the way its icon handlers work for Vista, requiring us to use a different display method which
unfortunately does not work on Windows 2000.

4.1.3. Drag and Drop

Sprievodca denného použitia

39

Obrázok 4.4. Right drag menu for a directory under version control

Other commands are available as drag handlers, when you right drag files or folders to a new location
inside working copies or when you right drag a non-versioned file or folder into a directory which is
under version control.

4.1.4. Klávesové skratky

Some common operations have well-known Windows shortcuts, but do not appear on buttons or in menus.
If you can't work out how to do something obvious, like refreshing a view, check here.

F1
Samozrejme pomoc.

F5
Refresh the current view. This is perhaps the single most useful one-key command. For example ...
In Explorer this will refresh the icon overlays on your working copy. In the commit dialog it will
re-scan the working copy to see what may need to be committed. In the Revision Log dialog it will
contact the repository again to check for more recent changes.

Ctrl-A
Select all. This can be used if you get an error message and want to copy and paste into an email.
Use Ctrl-A to select the error message and then ...

Ctrl-C
... Copy the selected text.

4.1.5. Authentifikácia

If the repository that you are trying to access is password protected, an authentication Dialog will show up.

Sprievodca denného použitia

40

Obrázok 4.5. Authentication Dialog

Enter your username and password. The checkbox will make TortoiseSVN store the credentials in
Subversion's default directory: %APPDATA%\Subversion\auth in three subdirectories:

• svn.simple contains credentials for basic authentication (username/password).

• svn.ssl.server contains SSL server certificates.

• svn.username contains credentials for username-only authentication (no password needed).

If you want to clear the authentication cache for all servers, you can do so from the Saved Data
page of TortoiseSVN's settings dialog. That button will clear all cached authentication data from the
Subversion auth directories, as well as any authentication data stored in the registry by earlier versions
of TortoiseSVN. Refer to Oddiel 4.30.6, “Saved Data Settings”.

Some people like to have the authentication data deleted when they log off Windows, or on shutdown. The
way to do that is to use a shutdown script to delete the %APPDATA%\Subversion\auth directory, e.g.

@echo off
rmdir /s /q "%APPDATA%\Subversion\auth"

You can find a description of how to install such scripts at windows-help-central.com [http://
www.windows-help-central.com/windows-shutdown-script.html].

For more information on how to set up your server for authentication and access control, refer to
Oddiel 3.5, “Pristupovanie k úložisku”

4.1.6. Maximalizovanie Okien

Many of TortoiseSVN's dialogs have a lot of information to display, but it is often useful to maximize
only the height, or only the width, rather than maximizing to fill the screen. As a convenience, there are
shortcuts for this on the Maximize button. Use the middle mouse button to maximize vertically, and right
mouse to maximize horizontally.

4.2. Importing Data Into A Repository

4.2.1. Importovať

If you are importing into an existing repository which already contains some projects, then the repository
structure will already have been decided. If are importing data into a new repository then it is worth taking
the time to think about how it will be organised. Read Oddiel 3.1.5, “Návrh úložiska” for further advice.

http://www.windows-help-central.com/windows-shutdown-script.html
http://www.windows-help-central.com/windows-shutdown-script.html
http://www.windows-help-central.com/windows-shutdown-script.html

Sprievodca denného použitia

41

This section describes the Subversion import command, which was designed for importing a directory
hierarchy into the repository in one shot. Although it does the job, it has several shortcomings:

• There is no way to select files and folders to include, aside from using the global ignore settings.

• The folder imported does not become a working copy. You have to do a checkout to copy the files
back from the server.

• It is easy to import to the wrong folder level in the repository.

For these reasons we recommend that you do not use the import command at all but rather follow the
two-step method described in Oddiel 4.2.2, “Import in Place”. But since you are here, this is how the
basic import works ...

Before you import your project into a repository you should:

1. Remove all files which are not needed to build the project (temporary files, files which are generated
by a compiler e.g. *.obj, compiled binaries, ...)

2. Organize the files in folders and sub-folders. Although it is possible to rename/move files later it is
highly recommended to get your project's structure straight before importing!

Now select the top-level folder of your project directory structure in the windows explorer and right click
to open the context menu. Select the command TortoiseSVN → Import... which brings up a dialog box:

Obrázok 4.6. Dialógové okno importovania

In this dialog you have to enter the URL of the repository location where you want to import your project.
It is very important to realise that the local folder you are importing does not itself appear in the repository,
only its content. For example if you have a structure:

C:\Projects\Widget\source
C:\Projects\Widget\doc
C:\Projects\Widget\images

and you import C:\Projects\Widget into http://mydomain.com/svn/trunk then you
may be surprised to find that your subdirectories go straight into trunk rather than being in a Widget

Sprievodca denného použitia

42

subdirectory. You need to specify the subdirectory as part of the URL, http://mydomain.com/
svn/trunk/Widget-X. Note that the import command will automatically create subdirectories within
the repository if they do not exist.

The import message is used as a log message.

By default, files and folders which match the global-ignore patterns are not imported. To override this
behaviour you can use the Include ignored files checkbox. Refer to Oddiel 4.30.1, “Hlavné Nastavenia”
for more information on setting a global ignore pattern.

As soon as you press OK TortoiseSVN imports the complete directory tree including all files into the
repository. The project is now stored in the repository under version control. Please note that the folder
you imported is NOT under version control! To get a version-controlled working copy you need to do a
Checkout of the version you just imported. Or read on to find out how to import a folder in place.

4.2.2. Import in Place

Assuming you already have a repository, and you want to add a new folder structure to it, just follow
these steps:

1. Use the repository browser to create a new project folder directly in the repository.

2. Checkout the new folder over the top of the folder you want to import. You will get a warning that the
local folder is not empty. Now you have a versioned top level folder with unversioned content.

3. Use TortoiseSVN → Add... on this versioned folder to add some or all of the content. You can add
and remove files, set svn:ignore properties on folders and make any other changes you need to.

4. Commit the top level folder, and you have a new versioned tree, and a local working copy, created
from your existing folder.

4.2.3. Special Files

Sometimes you need to have a file under version control which contains user specific data. That means
you have a file which every developer/user needs to modify to suit his/her local setup. But versioning
such a file is difficult because every user would commit his/her changes every time to the repository.

In such cases we suggest to use template files. You create a file which contains all the data your developers
will need, add that file to version control and let the developers check this file out. Then, each developer
has to make a copy of that file and rename that copy. After that, modifying the copy is not a problem
anymore.

As an example, you can have a look at TortoiseSVN's build script. It calls a file named
TortoiseVars.bat which doesn't exist in the repository. Only the file TortoiseVars.tmpl.
TortoiseVars.tmpl is the template file which every developer has to create a copy from and rename
that file to TortoiseVars.bat. Inside that file, we added comments so that the users will see which
lines they have to edit and change according to their local setup to get it working.

So as not to disturb the users, we also added the file TortoiseVars.bat to the ignore list of its parent
folder, i.e. we've set the Subversion property svn:ignore to include that filename. That way it won't
show up as unversioned on every commit.

4.3. Získať pracovnú kópiu

To obtain a working copy you need to do a checkout from a repository.

Select a directory in windows explorer where you want to place your working copy. Right click to pop up
the context menu and select the command TortoiseSVN → Checkout..., which brings up the following
dialog box:

Sprievodca denného použitia

43

Obrázok 4.7. Dialóg získania

If you enter a folder name that does not yet exist, then a directory with that name is created.

4.3.1. Hĺbka získavania

You can choose the depth you want to checkout, which allows you to specify the depth of recursion into
child folders. If you want just a few sections of a large tree, You can checkout the top level folder only,
then update selected folders recursively.

Úplne rekurzívne
Checkout the entire tree, including all child folders and sub-folders.

Immediate children, including folders
Checkout the specified directory, including all files and child folders, but do not populate the child
folders.

Only file children
Checkout the specified directory, including all files but do not checkout any child folders.

Only this item
Checkout the directory only. Do not populate it with files or child folders.

Pracovná kópia
Retain the depth specified in the working copy. This option is not used in the checkout dialog, but it
is the default in all other dialogs which have a depth setting.

Exclude
Used to reduce working copy depth after a folder has already been populated. This option is only
available in the Update to revision dialog.

If you check out a sparse working copy (i.e., by choosing something other than fully recursive for
the checkout depth), you can fetch additional sub-folders by using the repository browser (Oddiel 4.24,
“Prezeranie úložiska”) or the check for modifications dialog (Oddiel 4.7.3, “Miestny a vzdialeny stav”).

Sprievodca denného použitia

44

In the repository browser, Right click on the checked out folder, then use TortoiseSVN → Repo-
Browser to bring up the repository browser. Find the sub-folder you would like to add to your working
copy, then use Context menu → Update item to revision... That menu will only be visible if the
selected item does not exist yet in your working copy, but the parent item does exist.

In the check for modifications dialog, first click on the button Check repository. The dialog will show
all the files and folders which are in the repository but which you have not checked out as remotely
added. Right click on the folder(s) you would like to add to your working copy, then use Context menu
→ Update.

This feature is very useful when you only want to checkout parts of a large tree, but you want
the convenience of updating a single working copy. Suppose you have a large tree which has sub-
folders Project01 to Project99, and you only want to checkout Project03, Project25 and
Project76/SubProj. Use these steps:

1. Checkout the parent folder with depth “Only this item” You now have an empty top level folder.

2. Vyberte nový zložku a použite TortoiseSVN → Odovzdať pre zobrazenie obsahu úložiska.

3. Right click on Project03 and Context menu → Update item to revision.... Keep the default
settings and click on OK. You now have that folder fully populated.

Repeat the same process for Project25.

4. Navigate to Project76/SubProj and do the same. This time note that the Project76 folder
has no content except for SubProj, which itself is fully populated. Subversion has created the
intermediate folders for you without populating them.

Changing working copy depth

Once you have checked out a working copy to a particular depth you can change that depth
later to get more or less content using Context menu → Update item to revision....

Using an older server

Pre-1.5 servers do not understand the working copy depth request, so they cannot always
deal with requests efficiently. The command will still work, but an older server may send
all the data, leaving the client to filter out what is not required, which may mean a lot of
network traffic. If possible you should upgrade your server to 1.5.

If the project contains references to external projects which you do not want checked out at the same
time, use the Omit externals checkbox.

Dôležité

If Omit externals is checked, or if you wish to increase the depth value, you will have
to perform updates to your working copy using TortoiseSVN → Update to Revision...
instead of TortoiseSVN → Update. The standard update will include all externals and keep
the existing depth.

It is recommended that you check out only the trunk part of the directory tree, or lower. If you specify
the parent path of the directory tree in the URL then you might end up with a full hard disk since you will
get a copy of the entire repository tree including every branch and tag of your project!

Sprievodca denného použitia

45

Exportovanie

Sometimes you may want to create a local copy without any of those .svn directories,
e.g. to create a zipped tarball of your source. Read Oddiel 4.26, “Exporting a Subversion
Working Copy” to find out how to do that.

4.4. Posielanie vašich zmien do úložiska

Sending the changes you made to your working copy is known as committing the changes. But before
you commit you have to make sure that your working copy is up to date. You can either use TortoiseSVN
→ Update directly. Or you can use TortoiseSVN → Check for Modifications first, to see which files
have changed locally or on the server.

4.4.1. Dialóg odovzávania

If your working copy is up to date and there are no conflicts, you are ready to commit your changes.
Select any file and/or folders you want to commit, then TortoiseSVN → Commit....

Obrázok 4.8. Dialóg odovzávania

Sprievodca denného použitia

46

The commit dialog will show you every changed file, including added, deleted and unversioned files. If
you don't want a changed file to be committed, just uncheck that file. If you want to include an unversioned
file, just check that file to add it to the commit.

Items which have been switched to a different repository path are also indicated using an (s) marker.
You may have switched something while working on a branch and forgotten to switch back to trunk. This
is your warning sign!

Odovzdanie súbor alebo adresárov?

When you commit files, the commit dialog shows only the files you have selected. When
you commit a folder the commit dialog will select the changed files automatically. If you
forget about a new file you created, committing the folder will find it anyway. Committing
a folder does not mean that every file gets marked as changed; It just makes your life easier
by doing more work for you.

If you have modified files which have been included from a different repository using svn:externals,
those changes cannot be included in the same atomic commit. A warning symbol below the file list tells
you if this has happened, and the tooltip explains that those external files have to be committed separately.

Many unversioned files in the commit dialog

If you think that the commit dialog shows you too many unversioned (e.g. compiler
generated or editor backup) files, there are several ways to handle this. You can:

• add the file (or a wildcard extension) to the list of files to exclude on the settings page.
This will affect every working copy you have.

• add the file to the svn:ignore list using TortoiseSVN → Add to ignore list This will
only affect the directory on which you set the svn:ignore property. Using the SVN
Property Dialog, you can alter the svn:ignore property for a directory.

Read Oddiel 4.13, “Ignorovanie súborov a adresárov” for more information.

Double clicking on any modified file in the commit dialog will launch the external diff tool to show your
changes. The context menu will give you more options, as shown in the screenshot. You can also drag
files from here into another application such as a text editor or an IDE.

You can select or deselect items by clicking on the checkbox to the left of the item. For directories you
can use Shift-select to make the action recursive.

The columns displayed in the bottom pane are customizable. If you right click on any column header you
will see a context menu allowing you to select which columns are displayed. You can also change column
width by using the drag handle which appears when you move the mouse over a column boundary. These
customizations are preserved, so you will see the same headings next time.

By default when you commit changes, any locks that you hold on files are released automatically after the
commit succeeds. If you want to keep those locks, make sure the Keep locks checkbox is checked. The
default state of this checkbox is taken from the no_unlock option in the Subversion configuration file.
Read Oddiel 4.30.1, “Hlavné Nastavenia” for information on how to edit the Subversion configuration
file.

Drag and Drop

You can drag files into the commit dialog from elsewhere, so long as the working copies
are checked out from the same repository. For example, you may have a huge working copy

Sprievodca denného použitia

47

with several explorer windows open to look at distant folders of the hierarchy. If you want
to avoid committing from the top level folder (with a lengthy folder crawl to check for
changes) you can open the commit dialog for one folder and drag in items from the other
windows to include within the same atomic commit.

You can drag unversioned files which reside within a working copy into the commit dialog,
and they will be SVN added automatically.

Repairing External Renames

Sometimes files get renamed outside of Subversion, and they show up in the file list as
a missing file and an unversioned file. To avoid losing the history you need to notify
Subversion about the connection. Simply select both the old name (missing) and the new
name (unversioned) and use Context Menu → Repair Move to pair the two files as a
rename.

4.4.2. Change Lists

The commit dialog supports Subversion's changelist feature to help with grouping related files together.
Find out about this feature in Oddiel 4.8, “Change Lists”.

4.4.3. Excluding Items from the Commit List

Sometimes you have versioned files that change frequently but that you really don't want to commit.
Sometimes this indicates a flaw in your build process - why are those files versioned? should you be using
template files? But occasionally it is inevitable. A classic reason is that your IDE changes a timestamp
in the project file every time you build. The project file has to be versioned as it includes all the build
settings, but it doesn't need to be committed just because the timestamp changed.

To help out in awkward cases like this, we have reserved a changelist called ignore-on-commit. Any
file added to this changelist will automatically be unchecked in the commit dialog. You can still commit
changes, but you have to select it manually in the commit dialog.

4.4.4. Odovzdanie správ denníka

Be sure to enter a log message which describes the changes you are committing. This will help you to see
what happened and when, as you browse through the project log messages at a later date. The message
can be as long or as brief as you like; many projects have guidelines for what should be included, the
language to use, and sometimes even a strict format.

You can apply simple formatting to your log messages using a convention similar to that used within
emails. To apply styling to text, use *text* for bold, _text_ for underlining, and ̂ text^ for italics.

Sprievodca denného použitia

48

Obrázok 4.9. Kontrola pravopisu v onke odovzdávania
TortoiseSVN includes a spellchecker to help you get your log messages right. This will highlight any
mis-spelled words. Use the context menu to access the suggested corrections. Of course, it doesn't know
every technical term that you do, so correctly spelt words will sometimes show up as errors. But don't
worry. You can just add them to your personal dictionary using the context menu.

The log message window also includes a filename and function auto-completion facility. This uses regular
expressions to extract class and function names from the (text) files you are committing, as well as the
filenames themselves. If a word you are typing matches anything in the list (after you have typed at least 3
characters, or pressed Ctrl+Space), a drop-down appears allowing you to select the full name. The regular
expressions supplied with TortoiseSVN are held in the TortoiseSVN installation bin folder. You can also
define your own regexes and store them in %APPDATA%\TortoiseSVN\autolist.txt. Of course
your private autolist will not be overwritten when you update your installation of TortoiseSVN. If you
are unfamiliar with regular expressions, take a look at the introduction at http://en.wikipedia.org/wiki/
Regular_expression, and the online documentation and tutorial at http://www.regular-expressions.info/.

You can re-use previously entered log messages. Just click on Recent messages to view a list of the
last few messages you entered for this working copy. The number of stored messages can be customized
in the TortoiseSVN settings dialog.

You can clear all stored commit messages from the Saved data page of TortoiseSVN's settings, or you
can clear individual messages from within the Recent messages dialog using the Delete key.

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/

Sprievodca denného použitia

49

If you want to include the checked paths in your log message, you can use the command Context Menu
→ Paste filename list in the edit control.

Another way to insert the paths into the log message is to simply drag the files from the file list onto
the edit control.

Special Folder Properties

There are several special folder properties which can be used to help give more control over
the formatting of commit log messages and the language used by the spellchecker module.
Read Oddiel 4.17, “Nastavenia Projektu” for further information.

Integration with Bug Tracking Tools

If you have activated the bug tracking system, you can set one or more Issues in the Bug-
ID / Issue-Nr: text box. Multiple issues should be comma separated. Alternatively, if you
are using regex-based bug tracking support, just add your issue references as part of the
log message. Learn more in Oddiel 4.28, “Integration with Bug Tracking Systems / Issue
Trackers”.

4.4.5. Priebeh odovzdávania

After pressing OK, a dialog appears displaying the progress of the commit.

Obrázok 4.10. The Progress dialog showing a commit in progress

The progress dialog uses colour coding to highlight different commit actions

Modrá
Odovzdávanie zmien

Ružová
Committing a new addition.

Tvamo červená
Odovzdanie vymazania a náhrady.

Čierna
Ostatné objekty.

This is the default colour scheme, but you can customise those colours using the settings dialog. Read
Oddiel 4.30.1.4, “Nastavenia farieb TortoiseSVN” for more information.

Sprievodca denného použitia

50

4.5. Update Your Working Copy With Changes From Others

Obrázok 4.11. Progress dialog showing finished update
Periodically, you should ensure that changes done by others get incorporated in your local working copy.
The process of getting changes from the server to your local copy is known as updating. Updating may
be done on single files, a set of selected files, or recursively on entire directory hierarchies. To update,
select the files and/or directories you want, right click and select TortoiseSVN → Update in the explorer
context menu. A window will pop up displaying the progress of the update as it runs. Changes done by
others will be merged into your files, keeping any changes you may have done to the same files. The
repository is not affected by an update.

The progress dialog uses colour coding to highlight different update actions

Ružová
Pridaný nový objekt to vašej pracovnej kópie.

Tvamo červená
Redundant item deleted from your WC, or missing item replaced in your WC.

Zelené
Zmeny z úložiska boli úspešne zlúčené s vašimi miestnými zmenami.

Svetlo červené
Výsledkom zlúčenia zmien z úložiska a vaších zmien je stav konfliktu, ktorý treba vyriešiť.

Čierna
Nezmenený objekt vo vašej pracovnej kópií s novšoj verziou z úložiska.

This is the default colour scheme, but you can customise those colours using the settings dialog. Read
Oddiel 4.30.1.4, “Nastavenia farieb TortoiseSVN” for more information.

If you get any conflicts during an update (this can happen if others changed the same lines in the same file
as you did and those changes don't match) then the dialog shows those conflicts in red. You can double
click on these lines to start the external merge tool to resolve the conflicts.

When the update is complete, the progress dialog shows a summary of the number of items updated,
added, removed, conflicted, etc. below the file list. This summary information can be copied to the
clipboard using Ctrl+C.

The standard Update command has no options and just updates your working copy to the HEAD revision
of the repository, which is the most common use case. If you want more control over the update process,
you should use TortoiseSVN → Update to Revision... instead. This allows you to update your working

Sprievodca denného použitia

51

copy to a specific revision, not only to the most recent one. Suppose your working copy is at revision
100, but you want it to reflect the state which it had in revision 50 - then simply update to revision 50.
In the same dialog you can also choose the depth at which to update the current folder. The terms used
are described in Oddiel 4.3.1, “Hĺbka získavania”. The default depth is Working copy, which preserves
the existing depth setting. You can also choose whether to ignore any external projects in the update (i.e.
projects referenced using svn:externals).

Výstraha

If you update a file or folder to a specific revision, you should not make changes to those
files. You will get “out of date” error messages when you try to commit them! If you want
to undo changes to a file and start afresh from an earlier revision, you can rollback to a
previous revision from the revision log dialog. Take a look at Oddiel B.4, “Roll back (Undo)
revisions in the repository” for further instructions, and alternative methods.

Update to Revision can occasionally be useful to see what your project looked like at some earlier point
in its history. But in general, updating individual files to an earlier revision is not a good idea as it leaves
your working copy in an inconsistent state. If the file you are updating has changed name, you may even
find that the file just disappears from your working copy because no file of that name existed in the earlier
revision. You should also note that the item will show a normal green overlay, so it is indistinguishable
from files which are up-to-date.

If you simply want a local copy of an old version of a file it is better to use the Context Menu → Save
revision to... command from the log dialog for that file.

Multiple Files/Folders

If you select multiple files and folders in the explorer and then select Update, all of those
files/folders are updated one by one. TortoiseSVN makes sure that all files/folders which
are from the same repository are updated to the exact same revision! Even if between those
updates another commit occurred.

Miestny súbor už existuje

Sometimes when you try to update, the update fails with a message to say that there is
already a local file of the same name. This typically happens when Subversion tries to
checkout a newly versioned file, and finds that an unversioned file of the same name already
exists in your working folder. Subversion will never overwrite an unversioned file - it might
contain something you are working on, which coincidentally has the same filename as
another developer has used for his newly committed file.

If you get this error message, the solution is simply to rename the local unversioned file.
After completing the update, you can check whether the renamed file is still needed.

If you keep getting error messages, use TortoiseSVN → Check for Modifications instead
to list all the problem files. That way you can deal with them all at once.

4.6. Riešiť konflikty

Once in a while, you will get a conflict when you update/merge your files from the repository or when
you switch your working copy to a different URL. There are two kinds of conflicts:

konflikty súborov
A file conflict occurs if two (or more) developers have changed the same few lines of a file.

Sprievodca denného použitia

52

konflikty stromov
A tree conflict occurs when a developer moved/renamed/deleted a file or folder, which another
developer either also has moved/renamed/deleted or just modified.

4.6.1. Konflikty súborov

A file conflict occurs when two or more developers have changed the same few lines of a file. As
Subversion knows nothing of your project, it leaves resolving the conflicts to the developers. Whenever
a conflict is reported, you should open the file in question, and search for lines starting with the string
<<<<<<<. The conflicting area is marked like this:

 <<<<<<< filename
 your changes
 =======
 code merged from repository
 >>>>>>> revision

Also, for every conflicted file Subversion places three additional files in your directory:

filename.ext.mine
Toto je súbor ako existoval vo vašej pracovnej kópií predtím ako ste aktualizovali vašu pracovnú
kópiu - to znamená bez označovačov konfliktov. Tento súbor obsahuje vaše posledné zmeny, nič viac.

filename.ext.rOLDREV
Toto je súbor, ktorý bol BASE (základnou) revíziou predtím ako ste aktualizovali vašu pracovnú
kópiu. To je ten súbor, ktorý ste získali pred vašimi poslednými zmenami.

filename.ext.rNEWREV
Toto je súbor, ktorý váš Subversion klient práve získal pri aktualiyovaní vašej pracovnej kópie. Tento
súbor odpovedá hlavnej revízií v čase aktualizácie.

You can either launch an external merge tool / conflict editor with TortoiseSVN → Edit Conflicts or
you can use any other editor to manually resolve the conflict. You should decide what the code should
look like, do the necessary changes and save the file.

Afterwards execute the command TortoiseSVN → Resolved and commit your modifications to the
repository. Please note that the Resolve command does not really resolve the conflict. It just removes the
filename.ext.mine and filename.ext.r* files, to allow you to commit your changes.

If you have conflicts with binary files, Subversion does not attempt to merge the files itself. The local file
remains unchanged (exactly as you last changed it) and you have filename.ext.r* files. If you want
to discard your changes and keep the repository version, just use the Revert command. If you want to keep
your version and overwrite the repository version, use the Resolved command, then commit your version.

You can use the Resolved command for multiple files if you right click on the parent folder and select
TortoiseSVN → Resolved... This will bring up a dialog listing all conflicted files in that folder, and you
can select which ones to mark as resolved.

4.6.2. Konfliktov stromov

A tree conflict occurs when a developer moved/renamed/deleted a file or folder, which another developer
either also has moved/renamed/deleted or just modified. There are many different situations that can
result in a tree conflict, and all of them require different steps to resolve the conflict.

When a file is deleted locally in Subversion, the file is also deleted from the local file system, so even if
it is part of a tree conflict it cannot show a conflicted overlay and you cannot right click on it to resolve
the conflict. Use the Check for Modifications dialog instead to access the Edit conflicts option.

Sprievodca denného použitia

53

TortoiseSVN can help find the right place to merge changes, but there may be additional work required to
sort out the conflicts. Remember that after an update the working BASE will always contain the revision
of each item as it was in the repository at the time of update. If you revert a change after updating it goes
back to the repository state, not to the way it was when you started making your own local changes.

4.6.2.1. Local delete, incoming edit upon update

1. Developer A modifies Foo.c and commits it to the repository

2. Developer B has simultaneously moved Foo.c to Bar.c in his working copy, or simply deleted
Foo.c or its parent folder.

An update of developer B's working copy results in a tree conflict:

• Foo.c has been deleted from working copy, but is marked with a tree conflict.

• If the conflict results from a rename rather than a delete then Bar.c is marked as added, but does not
contain developer A's modifications.

Developer B now has to choose whether to keep Developer A's changes. In the case of a file rename,
he can merge the changes to Foo.c into the renamed file Bar.c. For simple file or directory deletions
he can choose to keep the item with Developer A's changes and discard the deletion. Or, by marking the
conflict as resolved without doing anything he effectively discards Developer A's changes.

The conflict edit dialog offers to merge changes if it can find the original file of the renamed Bar.c.
Depending on where the update was invoked, it may not be possible to find the source file.

4.6.2.2. Local edit, incoming delete upon update

1. Vývojá A presunie Foo.c do Bar.c a potvrdí zmeny v úložisku.

2. Developer B modifies Foo.c in his working copy.

Or in the case of a folder move ...

1. Developer A moves parent folder FooFolder to BarFolder and commits it to the repository.

2. Developer B modifies Foo.c in his working copy.

An update of developer B's working copy results in a tree conflict. For a simple file conflict:

• Bar.c is added to the working copy as a normal file.

• Foo.c is marked as added (with history) and has a tree conflict.

For a folder conflict:

• BarFolder is added to the working copy as a normal folder.

• FooFolder is marked as added (with history) and has a tree conflict.

Foo.c is marked as modified.

Developer B now has to decide whether to go with developer A's reorganisation and merge her changes
into the corresponding file in the new structure, or simply revert A's changes and keep the local file.

To merge her local changes with the reshuffle, Developer B must first find out to what filename the
conflicted file Foo.c was renamed/moved in the repository. This can be done by using the log dialog.
The changes must then be merged by hand as there is currently no way to automate or even simplify this
process. Once the changes have been ported across, the conflicted path is redundant and can be deleted. In
this case use the Remove button in the conflict editor dialog to clean up and mark the conflict as resolved.

If Developer B decides that A's changes were wrong then she must choose the Keep button in the conflict
editor dialog. This marks the conflicted file/folder as resolved, but Developer A's changes need to be
removed by hand. Again the log dialog helps to track down what was moved.

Sprievodca denného použitia

54

4.6.2.3. Local delete, incoming delete upon update

1. Developer A moves Foo.c to Bar.c and commits it to the repository

2. Developer B moves Foo.c to Bix.c

An update of developer B's working copy results in a tree conflict:

• Bix.c is marked as added with history.

• Bar.c is added to the working copy with status 'normal'.

• Foo.c is marked as deleted and has a tree conflict.

To resolve this conflict, Developer B has to find out to what filename the conflicted file Foo.c was
renamed/moved in the repository. This can be done by using the log dialog.

Then developer B has to decide which new filename of Foo.c to keep - the one done by developer A
or the rename done by himself.

After developer B has manually resolved the conflict, the tree conflict has to be marked as resolved with
the button in the conflict editor dialog.

4.6.2.4. Local missing, incoming edit upon merge

1. Developer A working on trunk modifies Foo.c and commits it to the repository

2. Developer B working on a branch moves Foo.c to Bar.c and commits it to the repository

A merge of developer A's trunk changes to developer B's branch working copy results in a tree conflict:

• Bar.c is already in the working copy with status 'normal'.

• Foo.c is marked as missing with a tree conflict.

To resolve this conflict, Developer B has to mark the file as resolved in the conflict editor dialog, which
will remove it from the conflict list. She then has to decide whether to copy the missing file Foo.c from
the repository to the working copy, whether to merge Developer A's changes to Foo.c into the renamed
Bar.c or whether to ignore the changes by marking the conflict as resolved and doing nothing else.

Note that if you copy the missing file from the repository and then mark as resolved, your copy will be
removed again. You have to resolve the conflict first.

4.6.2.5. Local edit, incoming delete upon merge

1. Developer A working on trunk moves Foo.c to Bar.c and commits it to the repository

2. Developer B working on a branch modifies Foo.c and commits it to the repository.

There is an equivalent case for folder moves, but it is not yet detected in Subversion 1.6 ...

1. Developer A working on trunk moves parent folder FooFolder to BarFolder and commits it to
the repository.

2. Developer B working on a branch modifies Foo.c in her working copy.

A merge of developer A's trunk changes to developer B's branch working copy results in a tree conflict:

• Bar.c is marked as added.

• Foo.c is marked as modified with a tree conflict.

Developer B now has to decide whether to go with developer A's reorganisation and merge her changes
into the corresponding file in the new structure, or simply revert A's changes and keep the local file.

Sprievodca denného použitia

55

To merge her local changes with the reshuffle, Developer B must first find out to what filename the
conflicted file Foo.c was renamed/moved in the repository. This can be done by using the log dialog for
the merge source. The conflict editor only shows the log for the working copy as it does not know which
path was used in the merge, so you will have to find that yourself. The changes must then be merged by
hand as there is currently no way to automate or even simplify this process. Once the changes have been
ported across, the conflicted path is redundant and can be deleted. In this case use the Remove button in
the conflict editor dialog to clean up and mark the conflict as resolved.

If Developer B decides that A's changes were wrong then she must choose the Keep button in the conflict
editor dialog. This marks the conflicted file/folder as resolved, but Developer A's changes need to be
removed by hand. Again the log dialog for the merge source helps to track down what was moved.

4.6.2.6. Local delete, incoming delete upon merge

1. Developer A working on trunk moves Foo.c to Bar.c and commits it to the repository

2. Developer B working on a branch moves Foo.c to Bix.c and commits it to the repository

A merge of developer A's trunk changes to developer B's branch working copy results in a tree conflict:

• Bix.c is marked with normal (unmodified) status.

• Bar.c is marked as added with history.

• Foo.c is marked as missing and has a tree conflict.

To resolve this conflict, Developer B has to find out to what filename the conflicted file Foo.c was
renamed/moved in the repository. This can be done by using the log dialog for the merge source. The
conflict editor only shows the log for the working copy as it does not know which path was used in the
merge, so you will have to find that yourself.

Then developer B has to decide which new filename of Foo.c to keep - the one done by developer A
or the rename done by himself.

After developer B has manually resolved the conflict, the tree conflict has to be marked as resolved with
the button in the conflict editor dialog.

4.7. Získavnie informácií o stave

While you are working on your working copy you often need to know which files you have changed/
added/removed or renamed, or even which files got changed and committed by others.

4.7.1. Prekrývané ikony

Obrázok 4.12. Explorer showing icon overlays

Sprievodca denného použitia

56

Teraz keď ste získali pracovnú kópiu z úložiska Subversion môžete si pozrieť zmenené ikonky v explorer-
y. Toto je jeden y dôvodov prečo je TortoiseSVN tak obľúbený. TortoiseSVN pridal takzvané prekryvané
ikonky na každú ikonku súboru, ktorú prekrýva. Ikonka sa mení v závisloti na stave súboru v Subversion.

Čerstvo získaná pracovná kópia má zelenú značku. To znamená že stav súboru v Subversion je normalny.

Keď začnete upravovať súbor, jeho stav sa zmení na upravené a prekryvajúca ikonka sa zmení na červený
výkričník. Takže ľahko zbadáte, ktoré súbory boli zmenené od poslednej aktualizácie vašej pracovnej
kópie a je ich potrebné odovzdať.

Ak pošas aktualizácie nastal konflikt ikonka sa zmení na žltú.

Ak ste nastavili na súbor vlastnosť svn:needs-lock, Subversion spraví súbor iba na čítanie, kým nezískate
zámok pre daný súbor. Súbory iba na čítanie majú toto prekrytie aby ste vedeli, že pred ich úpravou
potrebujete získať zámok.

If you hold a lock on a file, and the Subversion status is normal, this icon overlay reminds you that you
should release the lock if you are not using it to allow others to commit their changes to the file.

Táto ikonka zobrazuje, že súbory, alebo adresáre vrámci aktualného adresára boli naplánované na
<emphasisl>vymazané zo spr</emphasisl>

Znamieko plus vám hovorí, že súbor bol naplanovaný na pridané do správy verzií.

The bar sign tells you that a file or folder is ignored for version control purposes. This overlay is optional.

This icon shows files and folders which are not under version control, but have not been ignored. This
overlay is optional.

In fact, you may find that not all of these icons are used on your system. This is because the number of
overlays allowed by Windows is very limited and if you are also using an old version of TortoiseCVS,
then there are not enough overlay slots available. TortoiseSVN tries to be a “Good Citizen (TM)” and
limits its use of overlays to give other apps a chance too.

Now that there are more Tortoise clients around (TortoiseCVS, TortoiseHG, ...) the icon limit becomes a
real problem. To work around this, the TortoiseSVN project introduced a common shared icon set, loaded
as a DLL, which can be used by all Tortoise clients. Check with your client provider to see if this has
been integrated yet :-)

Sprievodca denného použitia

57

For a description of how icon overlays correspond to Subversion status and other technical details, read
Oddiel F.1, “Prekrývané ikony”.

4.7.2. Stĺpce TortoiseSVN vo Windows Explorer-i

The same information which is available from the icon overlays (and much more) can be displayed as
additional columns in Windows Explorer's Details View.

Simply right click on one of the headings of a column, choose More... from the context menu displayed. A
dialog will appear where you can specify the columns and their order, which is displayed in the “Detailed
View”. Scroll down until the entries starting with SVN come into view. Check the ones you would like to
have displayed and close the dialog by pressing OK. The columns will be appended to the right of those
currently displayed. You can reorder them by drag and drop, or resize them, so that they fit your needs.

Dôležité

The additional columns in the Windows Explorer are not available on Vista, since Microsoft
decided to not allow such columns for all files anymore but only for specific file types.

Tip

If you want the current layout to be displayed in all your working copies, you may want
to make this the default view.

4.7.3. Miestny a vzdialeny stav

Obrázok 4.13. Skontrolovať zmeny

It's often very useful to know which files you have changed and also which files got changed and
committed by others. That's where the command TortoiseSVN → Check For Modifications... comes
in handy. This dialog will show you every file that has changed in any way in your working copy, as well
as any unversioned files you may have.

Sprievodca denného použitia

58

If you click on the Check Repository then you can also look for changes in the repository. That way
you can check before an update if there's a possible conflict. You can also update selected files from the
repository without updating the whole folder. By default, the Check Repository button only fetches the
remote status with the checkout depth of the working copy. If you want to see all files and folders in the
repository, even those you have not checked out, then you have to hold down the Shift key when you
click on the Check Repository button.

Dialóg používa farebné kódovanie na zvýraznenie stavu.

Modrá
Miestne zmené objekty.

Ružová
Pridané objekty. Objekty, ktoré boli pridaná aj s históriou majú znak + v stĺpci Textový stav. Tooltip
zobrazuje odkiaľ boli nakopírované.

Tvamo červená
Vymazané, alebo chýbajúce objekty.

Zelené
Objekty upravené lokálne aj v úložisku. Zmeny budú zlúčené pri aktualizácií. Toto môže pri
aktulizácií spôsobiť konflikt.

Svetlo červené
Objekty lokálne zmené a vymazané v úložisku, alebo upravené v úložisku a miestne zmazané. Toto
vytvorí konflikt pri aktualizácií.

Čierna
Nezmenené a neverziované objekty.

This is the default colour scheme, but you can customise those colours using the settings dialog. Read
Oddiel 4.30.1.4, “Nastavenia farieb TortoiseSVN” for more information.

Items which have been switched to a different repository path are also indicated using an (s) marker.
You may have switched something while working on a branch and forgotten to switch back to trunk. This
is your warning sign!

From the context menu of the dialog you can show a diff of the changes. Check the local changes you
made using Context Menu → Compare with Base. Check the changes in the repository made by others
using Context Menu → Show Differences as Unified Diff.

You can also revert changes in individual files. If you have deleted a file accidentally, it will show up as
Missing and you can use Revert to recover it.

Unversioned and ignored files can be sent to the recycle bin from here using Context Menu → Delete.
If you want to delete files permanently (bypassing the recycle bin) hold the Shift key while clicking on
Delete.

If you want to examine a file in detail, you can drag it from here into another application such as a text
editor or IDE.

The columns are customizable. If you right click on any column header you will see a context menu
allowing you to select which columns are displayed. You can also change column width by using the
drag handle which appears when you move the mouse over a column boundary. These customizations
are preserved, so you will see the same headings next time.

If you are working on several unrelated tasks at once, you can also group files together into changelists.
Read Oddiel 4.4.2, “Change Lists” for more information.

At the bottom of the dialog you can see a summary of the range of repository revisions in use in your
working copy. These are the commit revisions, not the update revisions; they represent the range of

Sprievodca denného použitia

59

revisions where these files were last committed, not the revisions to which they have been updated. Note
that the revision range shown applies only to the items displayed, not to the entire working copy. If you
want to see that information for the whole working copy you must check the Show unmodified files
checkbox.

Tip

If you want a flat view of your working copy, i.e. showing all files and folders at every
level of the folder hierarchy, then the Check for Modifications dialog is the easiest way
to achieve that. Just check the Show unmodified files checkbox to show all files in your
working copy.

Repairing External Renames

Sometimes files get renamed outside of Subversion, and they show up in the file list as
a missing file and an unversioned file. To avoid losing the history you need to notify
Subversion about the connection. Simply select both the old name (missing) and the new
name (unversioned) and use Context Menu → Repair Move to pair the two files as a
rename.

4.7.4. Prezeranie rozdielov

Often you want to look inside your files, to have a look at what you've changed. You can accomplish this
by selecting a file which has changed, and selecting Diff from TortoiseSVN's context menu. This starts
the external diff-viewer, which will then compare the current file with the pristine copy (BASE revision),
which was stored after the last checkout or update.

Tip

Even when not inside a working copy or when you have multiple versions of the file lying
around, you can still display diffs:

Select the two files you want to compare in explorer (e.g. using Ctrl and the mouse) and
choose Diff from TortoiseSVN's context menu. The file clicked last (the one with the focus,
i.e. the dotted rectangle) will be regarded as the later one.

4.8. Change Lists

In an ideal world, you only ever work on one thing at a time, and your working copy contains only one set
of logical changes. OK, back to reality. It often happens that you have to work on several unrelated tasks
at once, and when you look in the commit dialog, all the changes are mixed in together. The changelist
feature helps you group files together, making it easier to see what you are doing. Of course this can
only work if the changes do not overlap. If two different tasks affect the same file, there is no way to
separate the changes.

Dôležité

The changelist feature in TortoiseSVN is only available in Windows XP and later, as it
depends on a shell capability which is not present in Windows 2000. Sorry, but Win2K is
really quite old now, so please don't complain.

You can see changelists in several places, but the most important ones are the commit dialog and the
check-for-modifications dialog. Let's start in the check-for-modifications dialog after you have worked

Sprievodca denného použitia

60

on several features and many files. When you first open the dialog, all the changed files are listed together.
Suppose you now want to organise things and group those files according to feature.

Select one or more files and use Context Menu → Move to changelist to add an item to a changelist.
Initially there will be no changelists, so the first time you do this you will create a new changelist. Give
it name which describes what you are using it for, and click OK. The dialog will now change to show
groups of items.

Once you have created a changelist you can drag and drop items into it, either from another changelist,
or from Windows Explorer. Dragging from Explorer can be useful as it allows you to add items to a
changelist before the file is modified. You could do that from the check-for-modifications dialog, but
only by displaying all unmodified files.

Obrázok 4.14. Dialog odovzdávania so zoznamom zmien

In the commit dialog you can see those same files, grouped by changelist. Apart from giving an immediate
visual indication of groupings, you can also use the group headings to select which files to commit.

On XP, there is a context menu when you right click on a group heading which gives you the choice to
check or uncheck all group entries. On Vista however the context menu is not necessary. Click on the
group header to select all entries, then check one of the selected entries to check all.

Sprievodca denného použitia

61

TortoiseSVN reserves one changelist name for its own use, namely ignore-on-commit. This is used
to mark versioned files which you almost never want to commit even though they have local changes.
This feature is described in Oddiel 4.4.3, “Excluding Items from the Commit List”.

When you commit files belonging to a changelist then normally you would expect that the changelist
membership is no longer needed. So by default, files are removed from changelists automatically on
commit. If you wish to retain the file in its changelist, use the Keep changelists checkbox at the bottom
of the commit dialog.

Tip

Changelists are purely a local client feature. Creating and removing changelists will not
affect the repository, nor anyone else's working copy. They are simply a convenient way
for you to organise your files.

4.9. Revision Log Dialog

For every change you make and commit, you should provide a log message for that change. That way
you can later find out what changes you made and why, and you have a detailed log for your development
process.

The Revision Log Dialog retrieves all those log messages and shows them to you. The display is divided
into 3 panes.

• The top pane shows a list of revisions where changes to the file/folder have been committed. This
summary includes the date and time, the person who committed the revision and the start of the log
message.

Lines shown in blue indicate that something has been copied to this development line (perhaps from
a branch).

• The middle pane shows the full log message for the selected revision.

• The bottom pane shows a list of all files and folders that were changed as part of the selected revision.

But it does much more than that - it provides context menu commands which you can use to get even
more information about the project history.

Sprievodca denného použitia

62

4.9.1. Invoking the Revision Log Dialog

Obrázok 4.15. The Revision Log Dialog

There are several places from where you can show the Log dialog:

• From the TortoiseSVN context submenu

• From the property page

• From the Progress dialog after an update has finished. Then the Log dialog only shows those revisions
which were changed since your last update

If the repository is unavailable you will see the Want to go offline? dialog, described in Oddiel 4.9.10,
“Offline Mode”.

4.9.2. Akcie denníka revízií

The top pane has an Actions column containing icons that summarize what has been done in that revision.
There are four different icons, each shown in its own column.

If a revision modified a file or directory, the modified icon is shown in the first column.

If a revision added a file or directory, the added icon is shown in the second column.

Sprievodca denného použitia

63

If a revision deleted a file or directory, the deleted icon is shown in the third column.

If a revision replaced a file or directory, the replaced icon is shown in the fourth column.

4.9.3. Získanie ďaľších informácií

Obrázok 4.16. The Revision Log Dialog Top Pane with Context Menu

The top pane of the Log dialog has a context menu that allows you to access much more information.
Some of these menu entries appear only when the log is shown for a file, and some only when the log
is shown for a folder.

Porovnať s pracovnou kópiou
Compare the selected revision with your working copy. The default Diff-Tool is TortoiseMerge which
is supplied with TortoiseSVN. If the log dialog is for a folder, this will show you a list of changed
files, and allow you to review the changes made to each file individually.

Compare and blame with working BASE
Blame the selected revision, and the file in your working BASE and compare the blame reports using
a visual diff tool. Read Oddiel 4.23.2, “Obviniť rozdiely” for more detail. (files only).

Show changes as unified diff
View the changes made in the selected revision as a Unified-Diff file (GNU patch format). This
shows only the differences with a few lines of context. It is harder to read than a visual file compare,
but will show all file changes together in a compact format.

Compare with previous revision
Compare the selected revision with the previous revision. This works in a similar manner to
comparing with your working copy. For folders this option will first show the changed files dialog
allowing you to select files to compare.

Sprievodca denného použitia

64

Compare and blame with previous revision
Show the changed files dialog allowing you to select files. Blame the selected revision, and the
previous revision, and compare the results using a visual diff tool. (folders only).

Uložiť revíziu na...
Save the selected revision to a file so you have an older version of that file. (files only).

Open / Open with...
Open the selected file, either with the default viewer for that file type, or with a program you choose.
(files only).

Obviňovanie...
Blame the file up to the selected revision. (files only).

Prezeranie úložiska
Open the repository browser to examine the selected file or folder in the repository as it was at the
selected revision.

Vytvoriť vetvu/značku z revízie
Create a branch or tag from a selected revision. This is useful e.g. if you forgot to create a tag and
already committed some changes which weren't supposed to get into that release.

Aktualizovať objekt na revíziu
Update your working copy to the selected revision. Useful if you want to have your working copy
reflect a time in the past, or if there have been further commits to the repository and you want to
update your working copy one step at a time. It is best to update a whole directory in your working
copy, not just one file, otherwise your working copy could be inconsistent.

If you want to undo an earlier change permanently, use Revert to this revision instead.

Vrátiť na revíziu
Revert to an earlier revision. If you have made several changes, and then decide that you really want
to go back to how things were in revision N, this is the command you need. The changes are undone
in your working copy so this operation does not affect the repository until you commit the changes.
Note that this will undo all changes made after the selected revision, replacing the file/folder with
the earlier version.

If your working copy is in an unmodified state, after you perform this action your working copy will
show as modified. If you already have local changes, this command will merge the undo changes
into your working copy.

What is happening internally is that Subversion performs a reverse merge of all the changes made
after the selected revision, undoing the effect of those previous commits.

If after performing this action you decide that you want to undo the undo and get your working copy
back to its previous unmodified state, you should use TortoiseSVN → Revert from within Windows
Explorer, which will discard the local modifications made by this reverse merge action.

If you simply want to see what a file or folder looked like at an earlier revision, use Update to
revision or Save revision as... instead.

Revert changes from this revision
Undo changes from which were made in the selected revision. The changes are undone in your
working copy so this operation does not affect the repository at all! Note that this will undo the
changes made in that revision only; it does not replace your working copy with the entire file at the
earlier revision. This is very useful for undoing an earlier change when other unrelated changes have
been made since.

If your working copy is in an unmodified state, after you perform this action your working copy will
show as modified. If you already have local changes, this command will merge the undo changes
into your working copy.

Sprievodca denného použitia

65

What is happening internally is that Subversion performs a reverse merge of that one revision,
undoing its effect from a previous commit.

You can undo the undo as described above in Revert to this revision.

Zlúčiť revíziu do...
Merge the selected revision(s) into a different working copy. A folder selection dialog allows you
to choose the working copy to merge into, but after that there is no confirmation dialog, nor any
opportunity to try a test merge. It is a good idea to merge into an unmodified working copy so that
you can revert the changes if it doesn't work out! This is a useful feature if you want to merge selected
revisions from one branch to another.

Získavanie...
Make a fresh checkout of the selected folder at the selected revision. This brings up a dialog for you
to confirm the URL and revision, and select a location for the checkout.

Exportovanie...
Export the selected file/folder at the selected revision. This brings up a dialog for you to confirm the
URL and revision, and select a location for the export.

Edit author / log message
Edit the log message or author attached to a previous commit. Read Oddiel 4.9.7, “Changing the Log
Message and Author” to find out how this works.

Show revision properties
View and edit any revision property, not just log message and author. Refer to Oddiel 4.9.7,
“Changing the Log Message and Author”.

Copy to clipboard
Copy the log details of the selected revisions to the clipboard. This will copy the revision number,
author, date, log message and the list of changed items for each revision.

Vyhľadať správy denníka...
Search log messages for the text you enter. This searches the log messages that you entered and
also the action summaries created by Subversion (shown in the bottom pane). The search is not case
sensitive.

Obrázok 4.17. Top Pane Context Menu for 2 Selected Revisions

If you select two revisions at once (using the usual Ctrl-modifier), the context menu changes and gives
you fewer options:

Porovnať revízie
Compare the two selected revisions using a visual difference tool. The default Diff-Tool is
TortoiseMerge which is supplied with TortoiseSVN.

If you select this option for a folder, a further dialog pops up listing the changed files and offering you
further diff options. Read more about the Compare Revisions dialog in Oddiel 4.10.3, “Porovavanie
adresárov”.

Sprievodca denného použitia

66

Blame revisions
Blame the two revisions and compare the blame reports using a visual difference tool. Read
Oddiel 4.23.2, “Obviniť rozdiely” for more detail.

Show differences as unified diff
View the differences between the two selected revisions as a Unified-Diff file. This works for files
and folders.

Copy to clipboard
Copy log messages to clipboard as described above.

Vyhľadať správy denníka...
Search log messages as described above.

If you select two or more revisions (using the usual Ctrl or Shift modifiers), the context menu will
include an entry to Revert all changes which were made in the selected revisions. This is the easiest way
to rollback a group of revisions in one go.

You can also choose to merge the selected revisions to another working copy, as described above.

If all selected revisions have the same author, you can edit the author of all those revisions in one go.

Obrázok 4.18. The Log Dialog Bottom Pane with Context Menu

The bottom pane of the Log dialog also has a context menu that allows you to

Zobraziť zmeny
Show changes made in the selected revision for the selected file. This context menu is only available
for files shown as modified.

Obviniť zmeny
Blame the selected revision and the previous revision for the selected file, and compare the blame
reports using a visual diff tool. Read Oddiel 4.23.2, “Obviniť rozdiely” for more detail.

Show as unified diff
Show file changes in unified diff format. This context menu is only available for files shown as
modified.

Open / Open with...
Open the selected file, either with the default viewer for that file type, or with a program you choose.

Obviňovanie...
Opens the Blame dialog, allowing you to blame up to the selected revision.

Revert changes from this revision
Revert the changes made to the selected file in that revision.

Sprievodca denného použitia

67

Zobraziť vlastnosti
View the Subversion properties for the selected item.

Show log
Show the revision log for the selected single file.

Get merge logs
Show the revision log for the selected single file, including merged changes. Find out more in
Oddiel 4.9.6, “Merge Tracking Features”.

Uložiť revíziu na...
Save the selected revision to a file so you have an older version of that file.

Tip

You may notice that sometimes we refer to changes and other times to differences. What's
the difference?

Subversion uses revision numbers to mean 2 different things. A revision generally
represents the state of the repository at a point in time, but it can also be used to represent
the changeset which created that revision, eg. “Done in r1234” means that the changes
committed in r1234 implement feature X. To make it clearer which sense is being used, we
use two different terms.

If you select two revisions N and M, the context menu will offer to show the difference
between those two revisions. In Subversion terms this is diff -r M:N.

If you select a single revision N, the context menu will offer to show the changes made in
that revision. In Subversion terms this is diff -r N-1:N or diff -c N.

The bottom pane shows the files changed in all selected revisions, so the context menu
always offers to show changes.

4.9.4. Získavnie viac správ denníka

The Log dialog does not always show all changes ever made for a number of reasons:

• For a large repository there may be hundreds or even thousands of changes and fetching them all could
take a long time. Normally you are only interested in the more recent changes. By default, the number
of log messages fetched is limited to 100, but you can change this value in TortoiseSVN → Settings
(Oddiel 4.30.1.2, “TortoiseSVN Dialog Settings 1”),

• When the Stop on copy/rename box is checked, Show Log will stop at the point that the selected file
or folder was copied from somewhere else within the repository. This can be useful when looking at
branches (or tags) as it stops at the root of that branch, and gives a quick indication of changes made
in that branch only.

Normally you will want to leave this option unchecked. TortoiseSVN remembers the state of the
checkbox, so it will respect your preference.

When the Show Log dialog is invoked from within the Merge dialog, the box is always checked by
default. This is because merging is most often looking at changes on branches, and going back beyond
the root of the branch does not make sense in that instance.

Note that Subversion currently implements renaming as a copy/delete pair, so renaming a file or folder
will also cause the log display to stop if this option is checked.

If you want to see more log messages, click the Next 100 to retrieve the next 100 log messages. You
can repeat this as many times as needed.

Sprievodca denného použitia

68

Next to this button there is a multi-function button which remembers the last option you used it for. Click
on the arrow to see the other options offered.

Use Show Range ... if you want to view a specific range of revisions. A dialog will then prompt you
to enter the start and end revision.

Use Show All if you want to see all log messages from HEAD right back to revision 1.

4.9.5. Current Working Copy Revision

Because the log dialog shows you the log from HEAD, not from the current working copy revision, it
often happens that there are log messages shown for content which has not yet been updated in your
working copy. To help make this clearer, the commit message which corresponds to the revision you have
in your working copy is shown in bold.

When you show the log for a folder the revision highlighted is the highest revision found anywhere within
that folder, which requires a crawl of the working copy. This can be a slow operation for large working
copies, and the log messages are not displayed until the crawl completes. If you want to disable or limit
this feature you need to set a registry key HKCU\Software\TortoiseSVN\RecursiveLogRev
as described in Oddiel 4.30.10, “Nastavenia registrov”.

4.9.6. Merge Tracking Features

Subversion 1.5 and later keeps a record of merges using properties. This allows us to get a more detailed
history of merged changes. For example, if you develop a new feature on a branch and then merge that
branch back to trunk, the feature development will show up on the trunk log as a single commit for the
merge, even though there may have been 1000 commits during branch development.

Sprievodca denného použitia

69

Obrázok 4.19. The Log Dialog Showing Merge Tracking Revisions

If you want to see the detail of which revisions were merged as part of that commit, use the Include
merged revisions checkbox. This will fetch the log messages again, but will also interleave the log
messages from revisions which were merged. Merged revisions are shown in grey because they represent
changes made on a different part of the tree.

Of course, merging is never simple! During feature development on the branch there will probably be
occasional merges back from trunk to keep the branch in sync with the main line code. So the merge
history of the branch will also include another layer of merge history. These different layers are shown
in the log dialog using indentation levels.

4.9.7. Changing the Log Message and Author

Revision properties are completely different from the Subversion properties of each item. Revprops are
descriptive items which are associated with one specific revision number in the repository, such as log
message, commit date and committer name (author).

Sometimes you might want to change a log message you once entered, maybe because there's a spelling
error in it or you want to improve the message or change it for other reasons. Or you want to change the
author of the commit because you forgot to set up authentication or...

Subversion lets you change revision properties any time you want. But since such changes can't be
undone (those changes are not versioned) this feature is disabled by default. To make this work, you
must set up a pre-revprop-change hook. Please refer to the chapter on Hook Scripts [http://svnbook.red-

http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks

Sprievodca denného použitia

70

bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks] in the Subversion Book for
details about how to do that. Read Oddiel 3.3, “Serverovské pripnuté (hook) skripty” to find some further
notes on implementing hooks on a Windows machine.

Once you've set up your server with the required hooks, you can change the author and log message (or
any other revprop) of any revision, using the context menu from the top pane of the Log dialog. You can
also edit a log message using the context menu for the middle pane.

Varovanie

Because Subversion's revision properties are not versioned, making modifications to such a
property (for example, the svn:log commit message property) will overwrite the previous
value of that property forever.

4.9.8. Filtrovanie sráv denníka

If you want to restrict the log messages to show only those you are interested in rather than scrolling
through a list of hundreds, you can use the filter controls at the top of the Log Dialog. The start and end
date controls allow you to restrict the output to a known date range. The search box allows you to show
only messages which contain a particular phrase.

Click on the search icon to select which information you want to search in, and to choose regex mode.
Normally you will only need a simple text search, but if you need to more flexible search terms, you
can use regular expressions. If you hover the mouse over the box, a tooltip will give hints on how to
use the regex functions. You can also find online documentation and a tutorial at http://www.regular-
expressions.info/. The filter works by checking whether your filter string matches the log entries, and
then only those entries which match the filter string are shown.

To make the filter show all log entries that do not match the filter string, start the string with an
exclamation mark ('!'). For example, a filter string !username will only show those entries which were
not committed by username.

Note that these filters act on the messages already retrieved. They do not control downloading of messages
from the repository.

You can also filter the path names in the bottom pane using the Hide unrelated changed paths
checkbox. Related paths are those which contain the path used to display the log. If you fetch the log for
a folder, that means anything in that folder or below it. For a file it means just that one file. The checkbox
is tristate: you can show all paths, grey out the unrelated ones, or hide the unrelated paths completely.

Sometimes your working practices will require log messages to follow a particular format, which means
that the text describing the changes is not visible in the abbreviated summary shown in the top pane. The
property tsvn:logsummary can be used to extract a portion of the log message to be shown in the
top pane. Read Oddiel 4.17.2, “TortoiseSVN Vlastnosti projektu” to find out how to use this property.

No Log Formatting from Repository Browser

Because the formatting depends upon accessing subversion properties, you will only see
the results when using a checked out working copy. Fetching properties remotely is a slow
operation, so you will not see this feature in action from the repo browser.

4.9.9. Štatistické informácie

The Statistics button brings up a box showing some interesting information about the revisions shown
in the Log dialog. This shows how many authors have been at work, how many commits they have made,

http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://www.regular-expressions.info/
http://www.regular-expressions.info/

Sprievodca denného použitia

71

progress by week, and much more. Now you can see at a glance who has been working hardest and who
is slacking ;-)

4.9.9.1. Stana štatístík

This page gives you all the numbers you can think of, in particular the period and number of revisions
covered, and some min/max/average values.

4.9.9.2. Odovzdania podľa autora

Obrázok 4.20. Histogram Odovzdania podľa Autorov

This graph shows you which authors have been active on the project as a simple histogram, stacked
histogram or pie chart.

Sprievodca denného použitia

72

Obrázok 4.21. Koláčový graf odovzdania podľa autorov

Where there are a few major authors and many minor contributors, the number of tiny segments can make
the graph more difficult to read. The slider at the bottom allows you to set a threshold (as a percentage
of total commits) below which any activity is grouped into an Others category.

Sprievodca denného použitia

73

4.9.9.3. Commits by date Page

Obrázok 4.22. Commits-by-date Graph

Táto strana vám dáva grafický prehľad o projekte v zmysle počtu odovzdaní a autor. Toto vám dá
presdtavu kedy sa na projekte pracovalo a kto na nom kedy pracoval.

When there are several authors, you will get many lines on the graph. There are two views available here:
normal, where each author's activity is relative to the base line, and stacked, where each author's activity
is relative to the line underneath. The latter option avoids the lines crossing over, which can make the
graph easier to read, but less easy to see one author's output.

By default the analysis is case-sensitive, so users PeterEgan and PeteRegan are treated as
different authors. However, in many cases user names are not case-sensitive, and are sometimes entered
inconsistently, so you may want DavidMorgan and davidmorgan to be treated as the same person.
Use the Authors case insensitive checkbox to control how this is handled.

Note that the statistics cover the same period as the Log dialog. If that is only displaying one revision
then the statistics will not tell you very much.

Sprievodca denného použitia

74

4.9.10. Offline Mode

Obrázok 4.23. Go Offline Dialog

If the server is not reachable, and you have log caching enabled you can use the log dialog and revision
graph in offline mode. This uses data from the cache, which allows you to continue working although the
information may not be up-to-date or even complete.

Here you have three options:

Offline for now
Complete the current operation in offline mode, but retry the repository next time log data is
requested.

Permanently offline
Remain in offline mode until a repository check is specifically requested. See Oddiel 4.9.11,
“Refreshing the View”.

Cancel
If you don't want to continue the operation with possibly stale data, just cancel.

The Make this the default checkbox prevents this dialog from re-appearing and always picks the option
you choose next. You can still change (or remove) the default after doing this from TortoiseSVN →
Settings.

4.9.11. Refreshing the View

If you want to check the server again for newer log messages, you can simply refresh the view using F5.
If you are using the log cache (enabled by default), this will check the repository for newer messages and
fetch only the new ones. If the log cache was in offline mode, this will also attempt to go back online.

If you are using the log cache and you think the message content or author may have changed, you can use
Shift-F5 or Ctrl-F5 to re-fetch the displayed messages from the server and update the log cache. Note
that this only affects messages currently shown and does not invalidate the entire cache for that repository.

4.10. Prezeranie rozdielov

One of the commonest requirements in project development is to see what has changed. You might want
to look at the differences between two revisions of the same file, or the differences between two separate

Sprievodca denného použitia

75

files. TortoiseSVN provides a built-in tool named TortoiseMerge for viewing differences of text files. For
viewing differences of image files, TortoiseSVN also has a tool named TortoiseIDiff. Of course, you can
use your own favourite diff program if you like.

4.10.1. Rozdiely v súboroch

Miestne zmeny
Keď chcete vidieť zmeny, ktoré ste vyurobili v pracovnej kópií, jednoducho vyberte kontextové
menuTortoiseSVN → Porovnať.

Porovnanie s inými vetvami/značkami
If you want to see what has changed on trunk (if you are working on a branch) or on a specific branch
(if you are working on trunk), you can use the explorer context menu. Just hold down the Shift key
while you right click on the file. Then select TortoiseSVN → Diff with URL. In the following dialog,
specify the URL in the repository with which you want to compare your local file to.

You can also use the repository browser and select two trees to diff, perhaps two tags, or a branch/
tag and trunk. The context menu there allows you to compare them using Compare revisions. Read
more in Oddiel 4.10.3, “Porovavanie adresárov”.

Zmeny od predchádzajúcej verzie
Keď chcete zobraziť rozdiely medzi konkrétnou revízou a pracovnou kópiou, pozužite dialóg
Denníka revízií, vyberte reviziu, ktorá vás zaujíma a z kontextového menu vyberte Porovnať s
pracovou kópiu.

If you want to see the difference between the last committed revision and your working copy,
assuming that the working copy hasn't been modified, just right click on the file. Then select
TortoiseSVN → Diff with previous version. This will perform a diff between the revision before
the last-commit-date (as recorded in your working copy) and the working BASE. This shows you
the last change made to that file to bring it to the state you now see in your working copy. It will not
show changes newer than your working copy.

Difference between two previous revisions
If you want to see the difference between two revisions which are already committed, use the
Revision Log dialog and select the two revisions you want to compare (using the usual Ctrl-
modifier). Then select Compare revisions from the context menu.

If you did this from the revision log for a folder, a Compare Revisions dialog appears, showing a list
of changed files in that folder. Read more in Oddiel 4.10.3, “Porovavanie adresárov”.

All changes made in a commit
If you want to see the changes made to all files in a particular revision in one view, you can use
Unified-Diff output (GNU patch format). This shows only the differences with a few lines of context.
It is harder to read than a visual file compare, but will show all the changes together. From the
Revision Log dialog select the revision of interest, then select Show Differences as Unified-Diff
from the context menu.

Rozdiely medzi súbormi
If you want to see the differences between two different files, you can do that directly in explorer
by selecting both files (using the usual Ctrl-modifier). Then from the explorer context menu select
TortoiseSVN → Diff.

Difference between WC file/folder and a URL
If you want to see the differences between a file in your working copy, and a file in any Subversion
repository, you can do that directly in explorer by selecting the file then holding down the Shift key
whilst right clicking to obtain the context menu. Select TortoiseSVN → Diff with URL. You can do
the same thing for a working copy folder. TortoiseMerge shows these differences in the same way as
it shows a patch file - a list of changed files which you can view one at a time.

Sprievodca denného použitia

76

Difference with blame information
If you want to see not only the differences but also the author, revision and date that changes
were made, you can combine the diff and blame reports from within the revision log dialog. Read
Oddiel 4.23.2, “Obviniť rozdiely” for more detail.

Rozdiely medzi adresármi
The built-in tools supplied with TortoiseSVN do not support viewing differences between directory
hierarchies. But if you have an external tool which does support that feature, you can use that instead.
In Oddiel 4.10.5, “Externé Porovnávacie/Zlučovacie Nástroje” we tell you about some tools which
we have used.

If you have configured a third party diff tool, you can use Shift when selecting the Diff command to use
the alternate tool. Read Oddiel 4.30.5, “Nastavnie externých programov” to find out about configuring
other diff tools.

4.10.2. Line-end and Whitespace Options

Sometimes in the life of a project you might change the line endings from CRLF to LF, or you may change
the indentation of a section. Unfortunately this will mark a large number of lines as changed, even though
there is no change to the meaning of the code. The options here will help to manage these changes when
it comes to comparing and applying differences. You will see these settings in the Merge and Blame
dialogs, as well as in the settings for TortoiseMerge.

Ignore line endings excludes changes which are due solely to difference in line-end style.

Compare whitespaces includes all changes in indentation and inline whitespace as added/removed
lines.

Ignore whitespace changes excludes changes which are due solely to a change in the amount or type
of whitespace, eg. changing the indentation or changing tabs to spaces. Adding whitespace where there
was none before, or removing a whitespace completely is still shown as a change.

Ignore all whitespaces excludes all whitespace-only changes.

Naturally, any line with changed content is always included in the diff.

4.10.3. Porovavanie adresárov

Sprievodca denného použitia

77

Obrázok 4.24. The Compare Revisions Dialog
When you select two trees within the repository browser, or when you select two revisions of a folder in
the log dialog, you can Context menu → Compare revisions.

This dialog shows a list of all files which have changed and allows you to compare or blame them
individually using context menu.

You can export a change tree, which is useful if you need to send someone else your project tree structure,
but containing only the files which have changed. This operation works on the selected files only, so you
need to select the files of interest - usually that means all of them - and then Context menu → Export
selection to.... You will be prompted for a location to save the change tree.

You can also export the list of changed files to a text file using Context menu → Save list of selected
files to....

If you want to export the list of files and the actions (modified, added, deleted) as well, you can do that
using Context menu → Copy selection to clipboard.

The button at the top allows you to change the direction of comparison. You can show the changes need
to get from A to B, or if you prefer, from B to A.

The buttons with the revision numbers on can be used to change to a different revision range. When you
change the range, the list of items which differ between the two revisions will be updated automatically.

If the list of filenames is very long, you can use the search box to reduce the list to filenames containing
specific text. Note that a simple text search is used, so if you want to restrict the list to C source files
you should enter .c rather than *.c.

4.10.4. Diffing Images Using TortoiseIDiff

Sprievodca denného použitia

78

There are many tools available for diffing text files, including our own TortoiseMerge, but we often find
ourselves wanting to see how an image file has changed too. That's why we created TortoiseIDiff.

Obrázok 4.25. Prehliadač zmien obrázkov

TortoiseSVN → Diff for any of the common image file formats will start TortoiseIDiff to show image
differences. By default the images are displayed side-by-side but you can use the View menu or toolbar
to switch to a top-bottom view instead, or if you prefer, you can overlay the images and pretend you are
using a lightbox.

Naturally you can also zoom in and out and pan around the image. You can also pan the image simply
by left-dragging it. If you select the Link images together option, then the pan controls (scrollbars,
mousewheel) on both images are linked.

An image info box shows details about the image file, such as the size in pixels, resolution and colour
depth. If this box gets in the way, use View → Image Info to hide it. You can get the same information
in a tooltip if you hover the mouse over the image title bar.

When the images are overlaid, the relative intensity of the images (alpha blend) is controlled by a slider
control at the left side. You can click anywhere in the slider to set the blend directly, or you can drag the
slider to change the blend interactively. Ctrl+Shift-Wheel to change the blend.

The button above the slider toggles between 0% and 100% blends, and if you double click the button,
the blend toggles automatically every second until you click the button again. This can be useful when
looking for multiple small changes.

Sometimes you want to see a difference rather than a blend. You might have the image files for two
revisions of a printed circuit board and want to see which tracks have changed. If you disable alpha blend
mode, the difference will be shown as an XOR of the pixel colour values. Unchanged areas will be plain
white and changes will be coloured.

4.10.5. Externé Porovnávacie/Zlučovacie Nástroje

Sprievodca denného použitia

79

Keď vám nevyhovujú nástroje, ktoré poskytujeme, skúste niektorý z množstva dostupných voľných, či
komerčných programov. Každý má svoje obúbené, a tento list nie je v žiadnom zmysle kompletný, ale
sú tu niektoré, ktoeé by vás mohli zaujať:

WinMerge
WinMerge [http://winmerge.sourceforge.net/] je veľkolepý porovnávací nástroj s voľným kódom,
ktorý tiež podporuje porovnaie adresárov.

Perforce Merge
Perforceje komerčný RCS, ale porovnávací/zlučovací nástroj je si možné stiahnuť zdarma. Viac sa
môžete dozvedieť na Perforce [http://www.perforce.com/perforce/products/merge.html].

KDiff3
KDiff3 je porovnávací nástroj, ktorý podporuje aj adresáre. Možete si ho stiahnuť tu [http://
kdiff3.sf.net/].

ExamDiff
ExamDiff Standard je voľný. Podporuje súbory, ale nie adresáre. ExamDiff Pro je shareware a má
množtsvo pridaných funkcií vrátane adresárov a možnosti úpravy súborov. Pri oboch od verzie 3.2
je podporovaný unicode. Môžete si ho stiahnuť z PrestoSoft [http://www.prestosoft.com/].

Beyond Compare
Similar to ExamDiff Pro, this is an excellent shareware diff tool which can handle directory diffs and
unicode. Download it from Scooter Software [http://www.scootersoftware.com/].

Araxis Merge
Araxis Merge is a useful commercial tool for diff and merging both files and folders. It does three-way
comparison in merges and has synchronization links to use if you've changed the order of functions.
Download it from Araxis [http://www.araxis.com/merge/index.html].

SciTE
This text editor includes syntax colouring for unified diffs, making them much easier to read.
Download it from Scintilla [http://www.scintilla.org/SciTEDownload.html].

Notepad2
Notepad2 is designed as a replacement for the standard Windows Notepad program, and is based on
the Scintilla open-source edit control. As well as being good for viewing unified diffs, it is much better
than the Windows notepad for most jobs. Download it for free here [http://www.flos-freeware.ch/
notepad2.html].

Read Oddiel 4.30.5, “Nastavnie externých programov” for information on how to set up TortoiseSVN
to use these tools.

4.11. Adding New Files And Directories

Obrázok 4.26. Explorer context menu for unversioned files
If you created new files and/or directories during your development process then you need to add them
to source control too. Select the file(s) and/or directory and use TortoiseSVN → Add.

http://winmerge.sourceforge.net/
http://winmerge.sourceforge.net/
http://www.perforce.com/perforce/products/merge.html
http://www.perforce.com/perforce/products/merge.html
http://kdiff3.sf.net/
http://kdiff3.sf.net/
http://kdiff3.sf.net/
http://www.prestosoft.com/
http://www.prestosoft.com/
http://www.scootersoftware.com/
http://www.scootersoftware.com/
http://www.araxis.com/merge/index.html
http://www.araxis.com/merge/index.html
http://www.scintilla.org/SciTEDownload.html
http://www.scintilla.org/SciTEDownload.html
http://www.flos-freeware.ch/notepad2.html
http://www.flos-freeware.ch/notepad2.html
http://www.flos-freeware.ch/notepad2.html

Sprievodca denného použitia

80

After you added the files/directories to source control the file appears with a added icon overlay which
means you first have to commit your working copy to make those files/directories available to other
developers. Adding a file/directory does not affect the repository!

Many Adds

You can also use the Add command on already versioned folders. In that case, the add dialog
will show you all unversioned files inside that versioned folder. This helps if you have many
new files and need to add them all at once.

To add files from outside your working copy you can use the drag-and-drop handler:

1. Vyberte súbor, ktorý chcete pridať

2. right-drag them to the new location inside the working copy

3. release the right mouse button

4. select Context Menu → SVN Add files to this WC. The files will then be copied to the working
copy and added to version control.

You can also add files within a working copy simply by left-dragging and dropping them onto the commit
dialog.

If you add a file or folder by mistake, you can undo the addition before you commit using TortoiseSVN
→ Undo add....

4.12. Copying/Moving/Renaming Files and Folders

It often happens that you already have the files you need in another project in your repository, and you
simply want to copy them across. You could simply copy the files and add them as described above, but
that would not give you any history. And if you subsequently fix a bug in the original files, you can only
merge the fix automatically if the new copy is related to the original in Subversion.

The easiest way to copy files and folders from within a working copy is to use the right-drag menu. When
you right-drag a file or folder from one working copy to another, or even within the same folder, a context
menu appears when you release the mouse.

Obrázok 4.27. Right drag menu for a directory under version control
Now you can copy existing versioned content to a new location, possibly renaming it at the same time.

You can also copy or move versioned files within a working copy, or between two working copies, using
the familiar cut-and-paste method. Use the standard Windows Copy or Cut to copy one or more versioned

Sprievodca denného použitia

81

items to the clipboard. If the clipboard contains such versioned items, you can then use TortoiseSVN
→ Paste (note: not the standard Windows Paste) to copy or move those items to the new working copy
location.

You can copy files and folders from your working copy to another location in the repository using
TortoiseSVN → Branch/Tag. Refer to Oddiel 4.19.1, “Vytvorenie vetvy / značky” to find out more.

You can locate an older version of a file or folder in the log dialog and copy it to a new location in the
repository directly from the log dialog using Context menu → Create branch/tag from revision. Refer
to Oddiel 4.9.3, “Získanie ďaľších informácií” to find out more.

You can also use the repository browser to locate content you want, and copy it into your working copy
directly from the repository, or copy between two locations within the repository. Refer to Oddiel 4.24,
“Prezeranie úložiska” to find out more.

Medzi úložiskami nie je mozné kopírovať

Whilst you can copy and files and folders within a repository, you cannot copy or move
from one repository to another while preserving history using TortoiseSVN. Not even if the
repositories live on the same server. All you can do is copy the content in its current state
and add it as new content to the second repository.

If you are uncertain whether two URLs on the same server refer to the same or different
repositories, use the repo browser to open one URL and find out where the repository root
is. If you can see both locations in one repo browser window then they are in the same
repository.

4.13. Ignorovanie súborov a adresárov

Obrázok 4.28. Explorer context menu for unversioned files

In most projects you will have files and folders that should not be subject to version control. These
might include files created by the compiler, *.obj, *.lst, maybe an output folder used to store the
executable. Whenever you commit changes, TortoiseSVN shows your unversioned files, which fills up
the file list in the commit dialog. Of course you can turn off this display, but then you might forget to
add a new source file.

The best way to avoid these problems is to add the derived files to the project's ignore list. That way they
will never show up in the commit dialog, but genuine unversioned source files will still be flagged up.

Keď pravý praví klik na jeden neverziovaný súbor, a vyberiete z kontextového menu príkaz TortoiseSVN
→ Pridať do zoznamu vylúčenia, objaví sa podmenu, ktoré vám umožní vybrať, či chcete vybrať iba

Sprievodca denného použitia

82

tento súbor, alebo všetky súbory s rovnakou príponov. Ak vyberiete viacero súborov, toto podmenu sa
vám nezobrazí a vylúčite iba vybrané súbory.

If you want to remove one or more items from the ignore list, right click on those items and select
TortoiseSVN → Remove from Ignore List You can also access a folder's svn:ignore property
directly. That allows you to specify more general patterns using filename globbing, described in the
section below. Read Oddiel 4.17, “Nastavenia Projektu” for more information on setting properties
directly. Please be aware that each ignore pattern has to be placed on a separate line. Separating them
by spaces does not work.

Globálný zoznam vylúčenia

Another way to ignore files is to add them to the global ignore list. The big difference here
is that the global ignore list is a client property. It applies to all Subversion projects, but on
the client PC only. In general it is better to use the svn:ignore property where possible,
because it can be applied to specific project areas, and it works for everyone who checks
out the project. Read Oddiel 4.30.1, “Hlavné Nastavenia” for more information.

Ignoring Versioned Items

Versioned files and folders can never be ignored - that's a feature of Subversion. If you
versioned a file by mistake, read Oddiel B.8, “Ignore files which are already versioned” for
instructions on how to “unversion” it.

4.13.1. Pattern Matching in Ignore Lists

Subversion's ignore patterns make use of filename globbing, a technique originally used in Unix to specify
files using meta-characters as wildcards. The following characters have special meaning:

*
Matches any string of characters, including the empty string (no characters).

?
Matches any single character.

[...]
Matches any one of the characters enclosed in the square brackets. Within the brackets, a pair of
characters separated by “-” matches any character lexically between the two. For example [AGm-
p] matches any one of A, G, m, n, o or p.

Pattern matching is case sensitive, which can cause problems on Windows. You can force case
insensitivity the hard way by pairing characters, eg. to ignore *.tmp regardless of case, you could use
a pattern like *.[Tt][Mm][Pp].

If you want an official definition for globbing, you can find it in the IEEE specifications for the
shell command language Pattern Matching Notation [http://www.opengroup.org/onlinepubs/009695399/
utilities/xcu_chap02.html#tag_02_13].

No Paths in Global Ignore List

You should not include path information in your pattern. The pattern matching is intended
to be used against plain file names and folder names. If you want to ignore all CVS folders,
just add CVS to the ignore list. There is no need to specify CVS */CVS as you did in earlier
versions. If you want to ignore all tmp folders when they exist within a prog folder but
not within a doc folder you should use the svn:ignore property instead. There is no
reliable way to achieve this using global ignore patterns.

http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13

Sprievodca denného použitia

83

4.14. Vymazávanie, Premenovanie a Presúvanie
Unlike CVS, Subversion allows renaming and moving of files and folders. So there are menu entries for
delete and rename in the TortoiseSVN submenu.

Obrázok 4.29. Explorer context menu for versioned files

4.14.1. Vymazavanie súborov a adresárov

Use TortoiseSVN → Delete to remove files or folders from subversion.

When you TortoiseSVN → Delete a file, it is removed from your working copy immediately as well as
being marked for deletion in the repository on next commit. The file's parent folder shows a “deleted”
icon overlay. Up until you commit the change, you can get the file back using TortoiseSVN → Revert
on the parent folder.

When you TortoiseSVN → Delete a folder, it remains in your working copy, but the overlay changes
to indicate that it is marked for deletion. Up until you commit the change, you can get the folder back
using TortoiseSVN → Revert on the folder itself. This difference in behaviour between files and folders
is a part of Subversion, not TortoiseSVN.

If you want to delete an item from the repository, but keep it locally as an unversioned file/folder, use
Extended Context Menu → Delete (keep local). You have to hold the Shift key while right clicking
on the item in the explorer list pane (right pane) in order to see this in the extended context menu.

If a file is deleted via the explorer instead of using the TortoiseSVN context menu, the commit dialog
shows those files and lets you remove them from version control too before the commit. However, if you
update your working copy, Subversion will spot the missing file and replace it with the latest version

Sprievodca denného použitia

84

from the repository. If you need to delete a version-controlled file, always use TortoiseSVN → Delete
so that Subversion doesn't have to guess what you really want to do.

If a folder is deleted via the explorer instead of using the TortoiseSVN context menu, your working copy
will be broken and you will be unable to commit. If you update your working copy, Subversion will
replace the missing folder with the latest version from the repository and you can then delete it the correct
way using TortoiseSVN → Delete.

Getting a deleted file or folder back

If you have deleted a file or a folder and already committed that delete operation to the
repository, then a normal TortoiseSVN → Revert can't bring it back anymore. But the file
or folder is not lost at all. If you know the revision the file or folder got deleted (if you don't,
use the log dialog to find out) open the repository browser and switch to that revision. Then
select the file or folder you deleted, right-click and select Context Menu → Copy to... as
the target for that copy operation select the path to your working copy.

4.14.2. Presúvanie súborov a adresárov

If you want to do a simple in-place rename of a file or folder, use Context Menu → Rename... Enter
the new name for the item and you're done.

If you want to move files around inside your working copy, perhaps to a different sub-folder, use the
right-mouse drag-and-drop handler:

1. select the files or directories you want to move

2. right-drag them to the new location inside the working copy

3. release the right mouse button

4. in the popup menu select Context Menu → SVN Move versioned files here

Commit the parent folder

Since renames and moves are done as a delete followed by an add you must commit the
parent folder of the renamed/moved file so that the deleted part of the rename/move will
show up in the commit dialog. If you don't commit the removed part of the rename/move,
it will stay behind in the repository and when your co-workers update, the old file will not
be removed. i.e. they will have both the old and the new copies.

You must commit a folder rename before changing any of the files inside the folder,
otherwise your working copy can get really messed up.

You can also use the repository browser to move items around. Read Oddiel 4.24, “Prezeranie úložiska”
to find out more.

Do Not SVN Move Externals

You should not use the TortoiseSVN Move or Rename commands on a folder which
has been created using svn:externals. This action would cause the external item
to be deleted from its parent repository, probably upsetting many other people. If you
need to move an externals folder you should use an ordinary shell move, then adjust the
svn:externals properties of the source and destination parent folders.

Sprievodca denného použitia

85

4.14.3. Changing case in a filename

Making case-only changes to a filename is tricky with Subversion on Windows, because for a short time
during a rename, both filenames have to exist. As Windows has a case-insensitive file system, this does
not work using the usual Rename command.

Fortunately there are (at least) two possible methods to rename a file without losing its log history. It is
important to rename it within subversion. Just renaming in the explorer will corrupt your working copy!

Riešenie A) (odporučané)

1. Odovzdať zmeny vo vašej pracovnaj kópií.

2. Premenovať súbor z UPPERcase na upperCASE priamo v úložisku pomocou prehliadača úložiska.

3. Aktulizuje vašu pravnú kópiu.

riešenie B)

1. Premenovať z UPPERcase na UPPERcase_ pomocou príkazu v podpomenu TortoiseSVN.

2. Odovzdať zmeny

3. Premenovať z UPPERcase_ na upperCASE.

4. Odovzdať zmeny

4.14.4. Dealing with filename case conflicts

If the repository already contains two files with the same name but differing only in case (e.g. TEST.TXT
and test.txt), you will not be able to update or checkout the parent directory on a Windows client.
Whilst Subversion supports case-sensitive filenames, Windows does not.

This sometimes happens when two people commit, from separate working copies, files which happen
to have the same name, but with a case difference. It can also happen when files are committed from a
system with a case-sensitive file system, like Linux.

In that case, you have to decide which one of them you want to keep and delete (or rename) the other
one from the repository.

Preventing two files with the same name

There is a server hook script available at: http://svn.collab.net/repos/svn/trunk/contrib/
hook-scripts/ that will prevent checkins which result in case conflicts.

4.14.5. Repairing File Renames

Sometimes your friendly IDE will rename files for you as part of a refactoring exercise, and of course
it doesn't tell Subversion. If you try to commit your changes, Subversion will see the old filename as
missing and the new one as an unversioned file. You could just check the new filename to get it added
in, but you would then lose the history tracing, as Subversion does not know the files are related.

A better way is to notify Subversion that this change is actually a rename, and you can do this within the
Commit and Check for Modifications dialogs. Simply select both the old name (missing) and the new
name (unversioned) and use Context Menu → Repair Move to pair the two files as a rename.

4.14.6. Vymazávanie neverziovaných súborov

Usually you set your ignore list such that all generated files are ignored in Subversion. But what if you
want to clear all those ignored items to produce a clean build? Usually you would set that in your makefile,

http://svn.collab.net/repos/svn/trunk/contrib/hook-scripts/
http://svn.collab.net/repos/svn/trunk/contrib/hook-scripts/

Sprievodca denného použitia

86

but if you are debugging the makefile, or changing the build system it is useful to have a way of clearing
the decks.

TortoiseSVN provides just such an option using Extended Context Menu → Delete unversioned
items.... You have to hold the Shift while right clicking on a folder in the explorer list pane (right pane)
in order to see this in the extended context menu. This will produce a dialog which lists all unversioned
files anywhere in your working copy. You can then select or deselect items to be removed.

When such items are deleted, the recycle bin is used, so if you make a mistake here and delete a file that
should have been versioned, you can still recover it.

4.15. Vrátiť zmeny

If you want to undo all changes you made in a file since the last update you need to select the file, right
click to pop up the context menu and then select the command TortoiseSVN → Revert A dialog will
pop up showing you the files that you've changed and can revert. Select those you want to revert and
click on OK.

Obrázok 4.30. Dialóg vrátenia

If you want to undo a deletion or a rename, you need to use Revert on the parent folder as the deleted
item does not exist for you to right-click on.

If you want to undo the addition of an item, this appears in the context menu as TortoiseSVN → Undo
add.... This is really a revert as well, but the name has been changed to make it more obvious.

The columns in this dialog can be customized in the same way as the columns in the Check for
modifications dialog. Read Oddiel 4.7.3, “Miestny a vzdialeny stav” for further details.

Sprievodca denného použitia

87

Undoing Changes which have been Committed

Revert will only undo your local changes. It does not undo any changes which have already
been committed. If you want to undo all the changes which were committed in a particular
revision, read Oddiel 4.9, “Revision Log Dialog” for further information.

Revert is Slow

When you revert changes you may find that the operation takes a lot longer than you expect.
This is because the modified version of the file is sent to the recycle bin, so you can retrieve
your changes if you reverted by mistake. However, if your recycle bin is full, Windows takes
a long time to find a place to put the file. The solution is simple: either empty the recycle
bin or deactivate the Use recycle bin when reverting box in TortoiseSVN's settings.

4.16. Vyčistiť

If a Subversion command cannot complete successfully, perhaps due to server problems, your working
copy can be left in an inconsistent state. In that case you need to use TortoiseSVN → Cleanup on the
folder. It is a good idea to do this at the top level of the working copy.

Cleanup has another useful side effect. If a file date changes but its content doesn't, Subversion cannot
tell whether it has really changed except by doing a byte-by-byte comparison with the pristine copy. If
you have a lot of files in this state it makes acquiring status very slow, which will make many dialogs
slow to respond. Executing a Cleanup on your working copy will repair these “broken” timestamps and
restore status checks to full speed.

Use Commit Timestamps

Some earlier releases of Subversion were affected by a bug which caused timestamp
mismatch when you check out with the Use commit timestamps option checked. Use the
Cleanup command to speed up these working copies.

4.17. Nastavenia Projektu

Sprievodca denného použitia

88

Obrázok 4.31. Explorer property page, Subversion tab

Sometimes you want to have more detailed information about a file/directory than just the icon overlay.
You can get all the information Subversion provides in the explorer properties dialog. Just select the
file or directory and select Windows Menu → properties in the context menu (note: this is the normal
properties menu entry the explorer provides, not the one in the TortoiseSVN submenu!). In the properties
dialog box TortoiseSVN has added a new property page for files/folders under Subversion control, where
you can see all relevant information about the selected file/directory.

4.17.1. Vlastnosti Subversion

Sprievodca denného použitia

89

Obrázok 4.32. Subversion property page

You can read and set the Subversion properties from the Windows properties dialog, but also from
TortoiseSVN → properties and within TortoiseSVN's status lists, from Context menu → properties.

You can add your own properties, or some properties with a special meaning in Subversion. These begin
with svn:. svn:externals is such a property; see how to handle externals in Oddiel 4.18, “externé
objekty”.

4.17.1.1. svn:keywords

Subversion supports CVS-like keyword expansion which can be used to embed filename and revision
information within the file itself. Keywords currently supported are:

$Date$
Date of last known commit. This is based on information obtained when you update your working
copy. It does not check the repository to find more recent changes.

$Revision$
Revízia posledného známeho odovzdania.

$Author$
Autor, ktorý urobil posledné známe odovzdanie.

$HeadURL$
Plná URL adresa súboru v úložisku.

Id
Komprimovaná kombinacia predchádyajúcich styroch.

To find out how to use these keywords, look at the svn:keywords section [http://svnbook.red-bean.com/
en/1.5/svn.advanced.props.special.keywords.html] in the Subversion book, which gives a full description
of these keywords and how to enable and use them.

For more information about properties in Subversion see the Special Properties [http://svnbook.red-
bean.com/en/1.5/svn.advanced.props.html].

http://svnbook.red-bean.com/en/1.5/svn.advanced.props.special.keywords.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.special.keywords.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.special.keywords.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html

Sprievodca denného použitia

90

4.17.1.2. Pridanie a úprava vlastností

Obrázok 4.33. Pridanie vlastností

To add a new property, first click on Add.... Select the required property name from the combo box, or
type in a name of your own choice, then enter a value in the box below. Properties which take multiple
values, such as an ignore list, can be entered on multiple lines. Click on OK to add that property to the list.

If you want to apply a property to many items at once, select the files/folders in explorer, then select
Context menu → properties

If you want to apply the property to every file and folder in the hierarchy below the current folder, check
the Recursive checkbox.

Some properties, for example svn:needs-lock, can only be applied to files, so the property name
doesn't appear in the drop down list for folders. You can still apply such a property recursively to all files
in a hierarchy, but you have to type in the property name yourself.

If you wish to edit an existing property, select that property from the list of existing properties, then click
on Edit....

If you wish to remove an existing property, select that property from the list of existing properties, then
click on Remove.

The svn:externals property can be used to pull in other projects from the same repository or a
completely different repository. For more information, read Oddiel 4.18, “externé objekty”.

4.17.1.3. Exporting and Importing Properties

Often you will find yourself applying the same set of properties many times, for example
bugtraq:logregex. To simplify the process of copying properties from one project to another, you
can use the Export/Import feature.

From the file or folder where the properties are already set, use TortoiseSVN → properties, select the
properties you wish to export and click on Export.... You will be prompted for a filename where the
property names and values will be saved.

Sprievodca denného použitia

91

From the folder(s) where you wish to apply these properties, use TortoiseSVN → properties and click
on Import.... You will be prompted for a filename to import from, so navigate to the place you saved the
export file previously and select it. The properties will be added to the folders non-recursively.

If you want to add properties to a tree recursively, follow the steps above, then in the property dialog
select each property in turn, click on Edit..., check the Apply property recursively box and click on OK.

The Import file format is binary and proprietary to TortoiseSVN. Its only purpose is to transfer properties
using Import and Export, so there is no need to edit these files.

4.17.1.4. Binárne vlastností

TortoiseSVN can handle binary property values using files. To read a binary property value, Save... to
a file. To set a binary value, use a hex editor or other appropriate tool to create a file with the content
you require, then Load... from that file.

Although binary properties are not often used, they can be useful in some applications. For example if
you are storing huge graphics files, or if the application used to load the file is huge, you might want to
store a thumbnail as a property so you can obtain a preview quickly.

4.17.1.5. Automatic property setting

You can configure Subversion and TortoiseSVN to set properties automatically on files and folders when
they are added to the repository. There are two ways of doing this.

You can edit the subversion configuration file to enable this feature on your client. The General page of
TortoiseSVN's settings dialog has an edit button to take you there directly. The config file is a simple text
file which controls some of subversion's workings. You need to change two things: firstly in the section
headed miscellany uncomment the line enable-auto-props = yes. Secondly you need to
edit the section below to define which properties you want added to which file types. This method is a
standard subversion feature and works with any subversion client. However it has to be defined on each
client individually - there is no way to propagate these settings from the repository.

An alternative method is to set the tsvn:autoprops property on folders, as described in the next
section. This method only works for TortoiseSVN clients, but it does get propagated to all working copies
on update.

Whichever method you choose, you should note that auto-props are only applied to files at the time
they are added to the repository. Auto-props will never change the properties of files which are already
versioned.

If you want to be absolutely sure that new files have the correct properties applied, you should set up a
repository pre-commit hook to reject commits where the required properties are not set.

Odovzdať vlastnosti

Subversion properties are versioned. After you change or add a property you have to commit
your changes.

Konflikty vo vlastnostiach

If there's a conflict on committing the changes, because another user has changed the same
property, Subversion generates a .prej file. Delete this file after you have resolved the
conflict.

4.17.2. TortoiseSVN Vlastnosti projektu

Sprievodca denného použitia

92

TortoiseSVN has a few special properties of its own, and these begin with tsvn:.

• tsvn:logminsize sets the minimum length of a log message for a commit. If you enter a shorter
message than specified here, the commit is disabled. This feature is very useful for reminding you to
supply a proper descriptive message for every commit. If this property is not set, or the value is zero,
empty log messages are allowed.

tsvn:lockmsgminsize sets the minimum length of a lock message. If you enter a shorter message
than specified here, the lock is disabled. This feature is very useful for reminding you to supply a proper
descriptive message for every lock you get. If this property is not set, or the value is zero, empty lock
messages are allowed.

• tsvn:logwidthmarker is used with projects which require log messages to be formatted with
some maximum width (typically 80 characters) before a line break. Setting this property to a non-zero
will do 2 things in the log message entry dialog: it places a marker to indicate the maximum width,
and it disables word wrap in the display, so that you can see whether the text you entered is too long.
Note: this feature will only work correctly if you have a fixed-width font selected for log messages.

• tsvn:logtemplate is used with projects which have rules about log message formatting. The
property holds a multi-line text string which will be inserted in the commit message box when you
start a commit. You can then edit it to include the required information. Note: if you are also using
tsvn:logminsize, be sure to set the length longer than the template or you will lose the protection
mechanism.

• Subversion allows you to set “autoprops” which will be applied to newly added or imported files, based
on the file extension. This depends on every client having set appropriate autoprops in their subversion
configuration file. tsvn:autoprops can be set on folders and these will be merged with the user's
local autoprops when importing or adding files. The format is the same as for subversion autoprops,
e.g. *.sh = svn:eol-style=native;svn:executable sets two properties on files with
the .sh extension.

If there is a conflict between the local autoprops and tsvn:autoprops, the project settings take
precedence because they are specific to that project.

• In the Commit dialog you have the option to paste in the list of changed files, including the status of
each file (added, modified, etc). tsvn:logfilelistenglish defines whether the file status is
inserted in English or in the localized language. If the property is not set, the default is true.

• TortoiseSVN can use spell checker modules which are also used by OpenOffice and Mozilla. If you
have those installed this property will determine which spell checker to use, i.e. in which language
the log messages for your project should be written. tsvn:projectlanguage sets the language
module the spell checking engine should use when you enter a log message. You can find the values for
your language on this page: MSDN: Language Identifiers [http://msdn2.microsoft.com/en-us/library/
ms776260.aspx].

You can enter this value in decimal, or in hexadecimal if prefixed with 0x. For example English (US)
can be entered as 0x0409 or 1033.

• The property tsvn:logsummary is used to extract a portion of the log message which is then shown
in the log dialog as the log message summary.

The value of the tsvn:logsummary property must be set to a one line regex string which contains
one regex group. Whatever matches that group is used as the summary.

An example: \[SUMMARY\]:\s+(.*) Will catch everything after “[SUMMARY]” in the log
message and use that as the summary.

• When you want to add a new property, you can either pick one from the list in the combo box, or
you can enter any property name you like. If your project uses some custom properties, and you want
those properties to appear in the list in the combo box (to avoid typos when you enter a property

http://msdn2.microsoft.com/en-us/library/ms776260.aspx
http://msdn2.microsoft.com/en-us/library/ms776260.aspx
http://msdn2.microsoft.com/en-us/library/ms776260.aspx

Sprievodca denného použitia

93

name), you can create a list of your custom properties using tsvn:userfileproperties and
tsvn:userdirproperties. Apply these properties to a folder. When you go to edit the properties
of any child item, your custom properties will appear in the list of pre-defined property names.

Some tsvn: properties require a true/false value. TortoiseSVN also understands yes as a synonym
for true and no as a synonym for false.

TortoiseSVN can integrate with some bug tracking tools. This uses project properties that start with
bugtraq:. Read Oddiel 4.28, “Integration with Bug Tracking Systems / Issue Trackers” for further
information.

It can also integrate with some web-based repository browsers, using project properties that start
with webviewer:. Read Oddiel 4.29, “Integration with Web-based Repository Viewers” for further
information.

Nastavenie vlastnosti projektu na adresáre

These special project properties must be set on folders for the system to work. When you
commit a file or folder the properties are read from that folder. If the properties are not found
there, TortoiseSVN will search upwards through the folder tree to find them until it comes
to an unversioned folder, or the tree root (eg. C:\) is found. If you can be sure that each
user checks out only from e.g trunk/ and not some sub-folder, then it is sufficient to set
the properties on trunk/. If you can't be sure, you should set the properties recursively
on each sub-folder. A property setting deeper in the project hierarchy overrides settings on
higher levels (closer to trunk/).

For project properties only you can use the Recursive checkbox to set the property to all
sub-folders in the hierarchy, without also setting it on all files.

When you add new sub-folders using TortoiseSVN, any project properties present in the parent folder
will automatically be added to the new child folder too.

Výstraha

Although TortoiseSVN's project properties are extremely useful, they only work with
TortoiseSVN, and some will only work in newer versions of TortoiseSVN. If people
working on your project use a variety of Subversion clients, or possibly have old versions
of TortoiseSVN, you may want to use repository hooks to enforce project policies. project
properties can only help to implement a policy, they cannot enforce it.

4.18. externé objekty

Sometimes it is useful to construct a working copy that is made out of a number of different checkouts. For
example, you may want different files or subdirectories to come from different locations in a repository,
or perhaps from different repositories altogether. If you want every user to have the same layout, you
can define the svn:externals properties to pull in the specified resource at the locations where they
are needed.

4.18.1. externé adresáre

Let's say you check out a working copy of /project1 to D:\dev\project1. Select the folder D:
\dev\project1, right click and choose Windows Menu → Properties from the context menu. The
Properties Dialog comes up. Then go to the Subversion tab. There, you can set properties. Click Add....
Select the svn:externals property from the combobox and write in the edit box the repository URL
in the format url folder or if you want to specify a particular revision, -rREV url folder You

Sprievodca denného použitia

94

can add multiple external projects, 1 per line. Suppose that you have set these properties on D:\dev
\project1:

http://sounds.red-bean.com/repos sounds
http://graphics.red-bean.com/repos/fast%20graphics "quick graphs"
-r21 http://svn.red-bean.com/repos/skin-maker skins/toolkit

Now click Set and commit your changes. When you (or any other user) update your working copy,
Subversion will create a sub-folder D:\dev\project1\sounds and checkout the sounds project,
another sub-folder D:\dev\project1\quick_graphs containing the graphics project, and finally
a nested sub-folder D:\dev\project1\skins\toolkit containing revision 21 of the skin-maker
project.

URLs must be properly escaped or they will not work, e.g. you must replace each space with %20 as
shown in the second example above.

If you want the local path to include spaces or other special characters, you can enclose it in double
quotes, or you can use the \ (backslash) character as a Unix shell style escape character preceding any
special character. Of course this also means that you must use / (forward slash) as a path delimiter. Note
that this behaviour is new in Subversion 1.6 and will not work with older clients.

Use explicit revision numbers

You should strongly consider using explicit revision numbers in all of your externals
definitions, as described above. Doing so means that you get to decide when to pull down
a different snapshot of external information, and exactly which snapshot to pull. Besides
the common sense aspect of not being surprised by changes to third-party repositories that
you might not have any control over, using explicit revision numbers also means that as
you backdate your working copy to a previous revision, your externals definitions will also
revert to the way they looked in that previous revision, which in turn means that the external
working copies will be updated to match they way they looked back when your repository
was at that previous revision. For software projects, this could be the difference between a
successful and a failed build of an older snapshot of your complex code base.

Older svn:externals definitions

The format shown here was introduced in Subversion 1.5. You may also see the older
format which has the same information in a different order. The new format is preferred
as it supports several useful features described below, but it will not work on older clients.
The differences are shown in the Subversion Book [http://svnbook.red-bean.com/en/1.5/
svn.advanced.externals.html].

If the external project is in the same repository, any changes you make there there will be included in the
commit list when you commit your main project.

If the external project is in a different repository, any changes you make to the external project will be
notified when you commit the main project, but you have to commit those external changes separately.

If you use absolute URLs in svn:externals definitions and you have to relocate your working copy
(i.e., if the URL of your repository changes), then your externals won't change and might not work
anymore.

To avoid such problems, Subversion clients version 1.5 and higher support relative external URLs.
Four different methods of specifying a relative URL are supported. In the following examples,
assume we have two repositories: one at http://example.com/svn/repos-1 and another at

http://svnbook.red-bean.com/en/1.5/svn.advanced.externals.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.externals.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.externals.html

Sprievodca denného použitia

95

http://example.com/svn/repos-2. We have a checkout of http://example.com/svn/
repos-1/project/trunk into C:\Working and the svn:externals property is set on trunk.

Relative to parent directory
These URLs always begin with the string ../ for example:

../../widgets/foo common/foo-widget

This will extract http://example.com/svn/repos-1/widgets/foo into C:\Working
\common\foo-widget.

Note that the URL is relative to the URL of the directory with the svn:externals property, not
to the directory where the external is written to disk.

Relative to repository root
These URLs always begin with the string ^/ for example:

^/widgets/foo common/foo-widget

This will extract http://example.com/svn/repos-1/widgets/foo into C:\Working
\common\foo-widget.

You can easily refer to other repositories with the same SVNParentPath (a common directory
holding several repositories). For example:

^/../repos-2/hammers/claw common/claw-hammer

This will extract http://example.com/svn/repos-2/hammers/claw into C:
\Working\common\claw-hammer.

Relative to scheme
URLs beginning with the string // copy only the scheme part of the URL. This is useful when the
same hostname must the accessed with different schemes depending upon network location; e.g.
clients in the intranet use http:// while external clients use svn+ssh://. For example:

//example.com/svn/repos-1/widgets/foo common/foo-widget

This will extract http://example.com/svn/repos-1/widgets/foo or svn+ssh://
example.com/svn/repos-1/widgets/foo depending on which method was used to
checkout C:\Working.

Relative to the server's hostname
URLs beginning with the string / copy the scheme and the hostname part of the URL, for example:

/svn/repos-1/widgets/foo common/foo-widget

This will extract http://example.com/svn/repos-1/widgets/foo into C:\Working
\common\foo-widget. But if you checkout your working copy from another server at
svn+ssh://another.mirror.net/svn/repos-1/project1/trunk then the external
reference will extract svn+ssh://another.mirror.net/svn/repos-1/widgets/
foo.

You can also specify a peg revision after the URL if required, e.g. http://sounds.red-
bean.com/repos@19.

Sprievodca denného použitia

96

If you need more information how TortoiseSVN handles Properties read Oddiel 4.17, “Nastavenia
Projektu”.

To find out about different methods of accessing common sub-projects read Oddiel B.6, “Zahrnutie
spoločného kódu”.

4.18.2. External Files

As of Subversion 1.6 you can add single file externals to your working copy using the same syntax as
for folders. However, there are some restrictions.

• The path to the file external must place the file in an existing versioned folder. In general it makes most
sense to place the file directly in the folder that has svn:externals set, but it can be in a versioned
sub-folder if necessary. By contrast, directory externals will automatically create any intermediate
unversioned folders as required.

• The URL for a file external must be in the same repository as the URL that the file external will be
inserted into; inter-repository file externals are not supported.

A file external behaves just like any other versioned file in many respects, but they cannot be moved or
deleted using the normal commands; the svn:externals property must be modified instead.

File externals support incomplete in Subversion 1.6

In subversion 1.6 it is not possible to remove a file external from your working copy once
you have added it, even if you delete the svn:externals property altogether. You have
to checkout a fresh working copy to remove the file.

4.19. Branching / Tagging

One of the features of version control systems is the ability to isolate changes onto a separate line of
development. This line is known as a branch. Branches are often used to try out new features without
disturbing the main line of development with compiler errors and bugs. As soon as the new feature is
stable enough then the development branch is merged back into the main branch (trunk).

Another feature of version control systems is the ability to mark particular revisions (e.g. a release
version), so you can at any time recreate a certain build or environment. This process is known as tagging.

Subversion does not have special commands for branching or tagging, but uses so-called “cheap copies”
instead. Cheap copies are similar to hard links in Unix, which means that instead of making a complete
copy in the repository, an internal link is created, pointing to a specific tree/revision. As a result branches
and tags are very quick to create, and take up almost no extra space in the repository.

4.19.1. Vytvorenie vetvy / značky

If you have imported your project with the recommended directory structure, creating a branch or tag
version is very simple:

Sprievodca denného použitia

97

Obrázok 4.34. Dialóg vetvy / značky

Select the folder in your working copy which you want to copy to a branch or tag, then select the command
TortoiseSVN → Branch/Tag....

The default destination URL for the new branch will be the source URL on which your working copy is
based. You will need to edit that URL to the new path for your branch/tag. So instead of

 http://svn.collab.net/repos/ProjectName/trunk

you might now use something like

 http://svn.collab.net/repos/ProjectName/tags/Release_1.10

If you can't remember the naming convention you used last time, click the button on the right to open the
repository browser so you can view the existing repository structure.

Now you have to select the source of the copy. Here you have three options:

HEAD revision in the repository
The new branch is copied directly in the repository from the HEAD revision. No data needs to be
transferred from your working copy, and the branch is created very quickly.

Sprievodca denného použitia

98

Špecifická revízia v úložisku
The new branch is copied directly in the repository but you can choose an older revision. This is
useful if you forgot to make a tag when you released your project last week. If you can't remember
the revision number, click the button on the right to show the revision log, and select the revision
number from there. Again no data is transferred from your working copy, and the branch is created
very quickly.

Pracovná kópia
The new branch is an identical copy of your local working copy. If you have updated some files to
an older revision in your WC, or if you have made local changes, that is exactly what goes into the
copy. Naturally this sort of complex tag may involve transferring data from your WC back to the
repository if it does not exist there already.

If you want your working copy to be switched to the newly created branch automatically, use the Switch
working copy to new branch/tag checkbox. But if you do that, first make sure that your working copy
does not contain modifications. If it does, those changes will be merged into the branch WC when you
switch.

Press OK to commit the new copy to the repository. Don't forget to supply a log message. Note that the
copy is created inside the repository.

Note that unless you opted to switch your working copy to the newly created branch, creating a Branch
or Tag does not affect your working copy. Even if you create the branch from your WC, those changes
are committed to the new branch, not to the trunk, so your WC may still be marked as modified with
respect to the trunk.

4.19.2. To Checkout or to Switch...

...that is (not really) the question. While a checkout downloads everything from the desired branch in the
repository to your working directory, TortoiseSVN → Switch... only transfers the changed data to your
working copy. Good for the network load, good for your patience. :-)

To be able to work with your freshly generated branch or tag you have several ways to handle it. You can:

• TortoiseSVN → Checkout to make a fresh checkout in an empty folder. You can check out to any
location on your local disk and you can create as many working copies from your repository as you like.

• Switch your current working copy to the newly created copy in the repository. Again select the top
level folder of your project and use TortoiseSVN → Switch... from the context menu.

In the next dialog enter the URL of the branch you just created. Select the Head Revision radio button
and click on OK. Your working copy is switched to the new branch/tag.

Switch works just like Update in that it never discards your local changes. Any changes you have made
to your working copy which have not yet been committed will be merged when you do the Switch. If
you do not want this to happen then you must either commit the changes before switching, or revert
your working copy to an already-committed revision (typically HEAD).

• If you want to work on trunk and branch, but don't want the expense of a fresh checkout, you can use
Windows Explorer to make a copy of your trunk checkout in another folder, then TortoiseSVN →
Switch... that copy to your new branch.

Sprievodca denného použitia

99

Obrázok 4.35. The Switch Dialog

Although Subversion itself makes no distinction between tags and branches, the way they are typically
used differs a bit.

• Tags are typically used to create a static snapshot of the project at a particular stage. As such they not
normally used for development - that's what branches are for, which is the reason we recommended
the /trunk /branches /tags repository structure in the first place. Working on a tag revision is
not a good idea, but because your local files are not write protected there is nothing to stop you doing
this by mistake. However, if you try to commit to a path in the repository which contains /tags/,
TortoiseSVN will warn you.

• It may be that you need to make further changes to a release which you have already tagged. The
correct way to handle this is to create a new branch from the tag first and commit the branch. Do your
Changes on this branch and then create a new tag from this new branch, e.g. Version_1.0.1.

• If you modify a working copy created from a branch and commit, then all changes go to the new branch
and not the trunk. Only the modifications are stored. The rest remains a cheap copy.

4.20. Zlučovanie

Where branches are used to maintain separate lines of development, at some stage you will want to merge
the changes made on one branch back into the trunk, or vice versa.

It is important to understand how branching and merging works in Subversion before you start using it, as
it can become quite complex. It is highly recommended that you read the chapter Branching and Merging
[http://svnbook.red-bean.com/en/1.5/svn.branchmerge.html] in the Subversion book, which gives a full
description and many examples of how it is used.

The next point to note is that merging always takes place within a working copy. If you want to merge
changes into a branch, you have to have a working copy for that branch checked out, and invoke the
merge wizard from that working copy using TortoiseSVN → Merge....

In general it is a good idea to perform a merge into an unmodified working copy. If you have made other
changes in your WC, commit those first. If the merge does not go as you expect, you may want to revert
the changes, and the Revert command will discard all changes including any you made before the merge.

There are three common use cases for merging which are handled in slightly different ways, as described
below. The first page of the merge wizard asks you to select the method you need.

http://svnbook.red-bean.com/en/1.5/svn.branchmerge.html
http://svnbook.red-bean.com/en/1.5/svn.branchmerge.html

Sprievodca denného použitia

100

Zlúčenie rozsahu revízií
This method covers the case when you have made one or more revisions to a branch (or to the trunk)
and you want to port those changes across to a different branch.

What you are asking Subversion to do is this: “Calculate the changes necessary to get [FROM]
revision 1 of branch A [TO] revision 7 of branch A, and apply those changes to my working copy
(of trunk or branch B).”

Reintegrate a branch
This method covers the case when you have made a feature branch as discussed in the Subversion
book. All trunk changes have been ported to the feature branch, week by week, and now the feature
is complete you want to merge it back into the trunk. Because you have kept the feature branch
synchronized with the trunk, the latest versions of branch and trunk will be absolutely identical except
for your branch changes.

This is a special case of the tree merge described below, and it requires only the URL to merge from
(normally) your development branch. It uses the merge-tracking features of Subversion to calculate
the correct revision ranges to use, and perform additional checks which ensure that the branch has
been fully updated with trunk changes. This ensures that you don't accidentally undo work that others
have committed to trunk since you last synchronized changes.

After the merge, all branch development has been completely merged back into the main development
line. The branch is now redundant and can be deleted.

Once you have performed a reintegrate merge you should not continue to use it for development.
The reason for this is that if you try to resynchronize your existing branch from trunk later on, merge
tracking will see your reintegration as a trunk change that has not yet been merged into the branch,
and will try to merge the branch-to-trunk merge back into the branch! The solution to this is simply
to create a new branch from trunk to continue the next phase of your development.

Merge two different trees
This is a more general case of the reintegrate method. What you are asking Subversion to do is:
“Calculate the changes necessary to get [FROM] the head revision of the trunk [TO] the head revision
of the branch, and apply those changes to my working copy (of the trunk).” The net result is that
trunk now looks exactly like the branch.

If your server/repository does not support merge-tracking then this is the only way to merge a
branch back to trunk. Another use case occurs when you are using vendor branches and you need
to merge the changes following a new vendor drop into your trunk code. For more information read
the chapter on vendor branches [http://svnbook.red-bean.com/en/1.5/svn.advanced.vendorbr.html]
in the Subversion Book.

4.20.1. Zlučenie rozshahu revízií

http://svnbook.red-bean.com/en/1.5/svn.advanced.vendorbr.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.vendorbr.html

Sprievodca denného použitia

101

Obrázok 4.36. The Merge Wizard - Select Revision Range

In the From: field enter the full folder URL of the branch or tag containing the changes you want to
port into your working copy. You may also click ... to browse the repository and find the desired branch.
If you have merged from this branch before, then just use the drop down list which shows a history of
previously used URLs.

In the Revision range to merge field enter the list of revisions you want to merge. This can be a single
revision, a list of specific revisions separated by commas, or a range of revisions separated by a dash,
or any combination of these.

Dôležité

There is an important difference in the way a revision range is specified with TortoiseSVN
compared to the command line client. The easiest way to visualise it is to think of a fence
with posts and fence panels.

With the command line client you specify the changes to merge using two “fence post”
revisions which specify the before and after points.

With TortoiseSVN you specify the changeset to merge using “fence panels”. The reason for
this becomes clear when you use the log dialog to specify revisions to merge, where each
revision appears as a changeset.

If you are merging revisions in chunks, the method shown in the subversion book will have
you merge 100-200 this time and 200-300 next time. With TortoiseSVN you would merge
100-200 this time and 201-300 next time.

Sprievodca denného použitia

102

This difference has generated a lot of heat on the mailing lists. We acknowledge that there
is a difference from the command line client, but we believe that for the majority of GUI
users it is easier to understand the method we have implemented.

The easiest way to select the range of revisions you need is to click on Show Log, as this will list recent
changes with their log comments. If you want to merge the changes from a single revision, just select
that revision. If you want to merge changes from several revisions, then select that range (using the usual
Shift-modifier). Click on OK and the list of revision numbers to merge will be filled in for you.

If you want to merge changes back out of your working copy, to revert a change which has already been
committed, select the revisions to revert and make sure the Reverse merge box is checked.

If you have already merged some changes from this branch, hopefully you will have made a note of the
last revision merged in the log message when you committed the change. In that case, you can use Show
Log for the Working Copy to trace that log message. Remembering that we are thinking of revisions as
changesets, you should Use the revision after the end point of the last merge as the start point for this
merge. For example, if you have merged revisions 37 to 39 last time, then the start point for this merge
should be revision 40.

If you are using the merge tracking features of Subversion, you do not need to remember which revisions
have already been merged - Subversion will record that for you. If you leave the revision range blank, all
revisions which have not yet been merged will be included. Read Oddiel 4.20.6, “Sledovanie zlučovania”
to find out more.

If other people may be committing changes then be careful about using the HEAD revision. It may not
refer to the revision you think it does if someone else made a commit after your last update.

Click Next and go to Oddiel 4.20.4, “Nastavenia zlučovania”

4.20.2. Reintegrate a branch

Sprievodca denného použitia

103

Obrázok 4.37. The Merge Wizard - Reintegrate Merge

To merge a feature branch back into the trunk you must start the merge wizard from within a working
copy of the trunk.

In the From URL: field enter the full folder URL of the branch that you want to merge back. You may
also click ... to browse the repository.

There are some conditions which apply to a reintegrate merge. Firstly, the server must support merge
tracking. The working copy must be of depth infinite (no sparse checkouts), and it must not have any local
modifications, switched items or items that have been updated to revisions other than HEAD. All changes
to trunk made during branch development must have been merged across to the branch (or marked as
having been merged). The range of revisions to merge will be calculated automatically.

4.20.3. Merging Two Different Trees

Sprievodca denného použitia

104

Obrázok 4.38. The Merge Wizard - Tree Merge

If you are using this method to merge a feature branch back to trunk, you need to start the merge wizard
from within a working copy of trunk.

In the From: field enter the full folder URL of the trunk. This may sound wrong, but remember that the
trunk is the start point to which you want to add the branch changes. You may also click ... to browse
the repository.

In the To: field enter the full folder URL of the feature branch.

In both the From Revision field and the To Revision field, enter the last revision number at which the two
trees were synchronized. If you are sure no-one else is making commits you can use the HEAD revision
in both cases. If there is a chance that someone else may have made a commit since that synchronization,
use the specific revision number to avoid losing more recent commits.

You can also use Show Log to select the revision.

4.20.4. Nastavenia zlučovania

This page of the wizard lets you specify advanced options, before starting the merge process. Most of
the time you can just use the default settings.

You can specify the depth to use for the merge, i.e. how far down into your working copy the merge
should go. The depth terms used are described in Oddiel 4.3.1, “Hĺbka získavania”. The default depth is
Working copy, which uses the existing depth setting, and is almost always what you want.

Most of the time you want merge to take account of the file's history, so that changes relative to a common
ancestor are merged. Sometimes you may need to merge files which are perhaps related, but not in

Sprievodca denného použitia

105

your repository. For example you may have imported versions 1 and 2 of a third party library into two
separate directories. Although they are logically related, Subversion has no knowledge of this because
it only sees the tarballs you imported. If you attempt to merge the difference between these two trees
you would see a complete removal followed by a complete add. To make Subversion use only path-
based differences rather than history-based differences, check the Ignore ancestry box. Read more about
this topic in the Subversion book, Noticing or Ignoring Ancestry [http://svnbook.red-bean.com/en/1.5/
svn.branchmerge.advanced.html#svn.branchmerge.advanced.ancestry]

You can specify the way that line ending and whitespace changes are handled. These options are described
in Oddiel 4.10.2, “Line-end and Whitespace Options”. The default behaviour is to treat all whitespace
and line-end differences as real changes to be merged.

If you are using merge tracking and you want to mark a revision as having been merged, without actually
doing the merge here, check the Only record the merge checkbox. There are two possible reasons you
might want to do this. It may be that the merge is too complicated for the merge algorithms, so you code
the changes by hand, then mark the change as merged so that the merge tracking algorithm is aware of
it. Or you might want to prevent a particular revision from being merged. Marking it as already merged
will prevent the merge occurring with merge-tracking-aware clients.

Now everything is set up, all you have to do is click on the Merge button. If you want to preview the
results Test Merge performs the merge operation, but does not modify the working copy at all. It shows
you a list of the files that will be changed by a real merge, and notes those areas where conflicts will occur.

The merge progress dialog shows each stage of the merge, with the revision ranges involved. This may
indicate one more revision than you were expecting. For example if you asked to merge revision 123
the progress dialog will report “Merging revisions 122 through 123”. To understand this you need to
remember that Merge is closely related to Diff. The merge process works by generating a list of differences
between two points in the repository, and applying those differences to your working copy. The progress
dialog is simply showing the start and end points for the diff.

4.20.5. Prezeranie výsledov zlúčovania

The merge is now complete. It's a good idea to have a look at the merge and see if it's as expected. Merging
is usually quite complicated. Conflicts often arise if the branch has drifted far from the trunk.

For Subversion clients and servers prior to 1.5, no merge information is stored and merged
revisions have to be tracked manually. When you have tested the changes and come to commit
this revision, your commit log message should always include the revision numbers which have
been ported in the merge. If you want to apply another merge at a later time you will need to
know what you have already merged, as you do not want to port a change more than once. For
more information about this, refer to Best Practices for Merging [http://svnbook.red-bean.com/en/1.4/
svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac] in the Subversion book.

If your server and all clients are running Subversion 1.5 or higher, the merge tracking facility will record
the revisions merged and avoid a revision being merged more than once. This makes your life much
simpler as you can simply merge the entire revision range each time and know that only new revisions
will actually be merged.

Branch management is important. If you want to keep this branch up to date with the trunk, you should
be sure to merge often so that the branch and trunk do not drift too far apart. Of course, you should still
avoid repeated merging of changes, as explained above.

Tip

If you have just merged a feature branch back into the trunk, the trunk now contains all
the new feature code, and the branch is obsolete. You can now delete it from the repository
if required.

http://svnbook.red-bean.com/en/1.5/svn.branchmerge.advanced.html#svn.branchmerge.advanced.ancestry
http://svnbook.red-bean.com/en/1.5/svn.branchmerge.advanced.html#svn.branchmerge.advanced.ancestry
http://svnbook.red-bean.com/en/1.5/svn.branchmerge.advanced.html#svn.branchmerge.advanced.ancestry
http://svnbook.red-bean.com/en/1.4/svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac
http://svnbook.red-bean.com/en/1.4/svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac
http://svnbook.red-bean.com/en/1.4/svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac

Sprievodca denného použitia

106

Dôležité

Subversion can't merge a file with a folder and vice versa - only folders to folders and files
to files. If you click on a file and open up the merge dialog, then you have to give a path
to a file in that dialog. If you select a folder and bring up the dialog, then you must specify
a folder URL for the merge.

4.20.6. Sledovanie zlučovania

Subversion 1.5 introduced facilities for merge tracking. When you merge changes from one tree into
another, the revision numbers merged are stored and this information can be used for several different
purposes.

• You can avoid the danger of merging the same revision twice (repeated merge problem). Once a revision
is marked as having been merged, future merges which include that revision in the range will skip
over it.

• When you merge a branch back into trunk, the log dialog can show you the branch commits as part of
the trunk log, giving better traceability of changes.

• When you show the log dialog from within the merge dialog, revisions already merged are shown in
grey.

• When showing blame information for a file, you can choose to show the original author of merged
revisions, rather than the person who did the merge.

• You can mark revisions as do not merge by including them in the list of merged revisions without
actually doing the merge.

Merge tracking information is stored in the svn:mergeinfo property by the client when it performs
a merge. When the merge is committed the server stores that information in a database, and when you
request merge, log or blame information, the server can respond appropriately. For the system to work
properly you must ensure that the server, the repository and all clients are upgraded. Earlier clients will
not store the svn:mergeinfo property and earlier servers will not provide the information requested
by new clients.

Find out more about merge tracking from Subversion's Merge tracking documentation [http://
subversion.tigris.org/merge-tracking/index.html].

4.20.7. Handling Conflicts during Merge

Merging does not always go smoothly. Sometimes there is a conflict, and if you are merging multiple
ranges, you generally want to resolve the conflict before merging of the next range starts. TortoiseSVN
helps you through this process by showing the merge conflict callback dialog.

http://subversion.tigris.org/merge-tracking/index.html
http://subversion.tigris.org/merge-tracking/index.html
http://subversion.tigris.org/merge-tracking/index.html

Sprievodca denného použitia

107

Obrázok 4.39. The Merge Conflict Callback Dialog

When a conflict occurs during the merge, you have three ways to handle it.

1. You may decide that your local changes are much more important, so you want to discard the version
from the repository and keep your local version. Or you might discard your local changes in favour
of the repository version. Either way, no attempt is made to merge the changes - you choose one or
the other.

2. Normally you will want to look at the conflicts and resolve them. In that case, choose the Edit Conflict
which will start up your merge tool. When you are satisfied with the result, click Resolved.

3. The last option is to postpone resolution and continue with merging. You can choose to do that for the
current conflicted file, or for all files in the rest of the merge. However, if there are further changes in
that file, it will not be possible to complete the merge.

If you do not want to use this interactive callback, there is a checkbox in the merge progress dialog Merge
non-interactive. If this is set for a merge and the merge would result in a conflict, the file is marked as in
conflict and the merge goes on. You will have to resolve the conflicts after the whole merge is finished.
If it is not set, then before a file is marked as conflicted you get the chance to resolve the conflict during
the merge. This has the advantage that if a file gets multiple merges (multiple revisions apply a change
to that file), subsequent merges might succeed depending on which lines are affected. But of course you
can't walk away to get a coffee while the merge is running ;)

4.20.8. Merge a Completed Branch

If you want to merge all changes from a feature branch back to trunk, then you can use the TortoiseSVN
→ Merge reintegrate... from the extended context menu (hold down the Shift key while you right click
on the file).

Sprievodca denného použitia

108

Obrázok 4.40. The Merge reintegrate Dialog
This dialog is very easy. All you have to do is set the options for the merge, as described in Oddiel 4.20.4,
“Nastavenia zlučovania”. The rest is done by TortoiseSVN automatically using merge tracking.

4.20.9. Feature Branch Maintenance

When you develop a new feature on a separate branch it is a good idea to work out a policy for re-
integration when the feature is complete. If other work is going on in trunk at the same time you may
find that the differences become significant over time, and merging back becomes a nightmare.

If the feature is relatively simple and development will not take long then you can adopt a simple approach,
which is to keep the branch entirely separate until the feature is complete, then merge the branch changes
back into trunk. In the merge wizard this would be a simple Merge a range of revisions, with the
revision range being the revision span of the branch.

If the feature is going to take longer and you need to account for changes in trunk, then you need to keep
the branch synchronised. This simply means that periodically you merge trunk changes into the branch,
so that the branch contains all the trunk changes plus the new feature. The synchronisation process uses
Merge a range of revisions. When the feature is complete then you can merge it back to trunk using
either Reintegrate a branch or Merge two different trees.

4.21. Locking

Subversion generally works best without locking, using the “Copy-Modify-Merge” methods described
earlier in Oddiel 2.2.3, “Riešenie typu Kopírovať-Upraviť-Zlúčiť”. However there are a few instances
when you may need to implement some form of locking policy.

• You are using “unmergeable” files, for example, graphics files. If two people change the same file,
merging is not possible, so one of you will lose their changes.

• Your company has always used a locking revision control system in the past and there has been a
management decision that “locking is best”.

Firstly you need to ensure that your Subversion server is upgraded to at least version 1.2. Earlier versions
do not support locking at all. If you are using file:// access, then of course only your client needs
to be updated.

4.21.1. How Locking Works in Subversion

By default, nothing is locked and anyone who has commit access can commit changes to any file at any
time. Others will update their working copies periodically and changes in the repository will be merged
with local changes.

Sprievodca denného použitia

109

If you Get a Lock on a file, then only you can commit that file. Commits by all other users will be blocked
until you release the lock. A locked file cannot be modified in any way in the repository, so it cannot be
deleted or renamed either, except by the lock owner.

However, other users will not necessarily know that you have taken out a lock. Unless they check the lock
status regularly, the first they will know about it is when their commit fails, which in most cases is not
very useful. To make it easier to manage locks, there is a new Subversion property svn:needs-lock.
When this property is set (to any value) on a file, whenever the file is checked out or updated, the local
copy is made read-only unless that working copy holds a lock for the file. This acts as a warning that you
should not edit that file unless you have first acquired a lock. Files which are versioned and read-only are
marked with a special overlay in TortoiseSVN to indicate that you need to acquire a lock before editing.

Locks are recorded by working copy location as well as by owner. If you have several working copies (at
home, at work) then you can only hold a lock in one of those working copies.

If one of your co-workers acquires a lock and then goes on holiday without releasing it, what do you
do? Subversion provides a means to force locks. Releasing a lock held by someone else is referred to
as Breaking the lock, and forcibly acquiring a lock which someone else already holds is referred to as
Stealing the lock. Naturally these are not things you should do lightly if you want to remain friends with
your co-workers.

Locks are recorded in the repository, and a lock token is created in your local working copy. If there is a
discrepancy, for example if someone else has broken the lock, the local lock token becomes invalid. The
repository is always the definitive reference.

4.21.2. Získanie zámku

Select the file(s) in your working copy for which you want to acquire a lock, then select the command
TortoiseSVN → Get Lock....

Obrázok 4.41. Dialóg zamykania

A dialog appears, allowing you to enter a comment, so others can see why you have locked the file. The
comment is optional and currently only used with Svnserve based repositories. If (and only if) you need
to steal the lock from someone else, check the Steal lock box, then click on OK.

Sprievodca denného použitia

110

If you select a folder and then use TortoiseSVN → Get Lock... the lock dialog will open with every file
in every sub-folder selected for locking. If you really want to lock an entire hierarchy, that is the way
to do it, but you could become very unpopular with your co-workers if you lock them out of the whole
project. Use with care ...

4.21.3. Uvolnenie zámku

To make sure you don't forget to release a lock you don't need any more, locked files are shown in the
commit dialog and selected by default. If you continue with the commit, locks you hold on the selected
files are removed, even if the files haven't been modified. If you don't want to release a lock on certain
files, you can uncheck them (if they're not modified). If you want to keep a lock on a file you've modified,
you have to enable the Keep locks checkbox before you commit your changes.

To release a lock manually, select the file(s) in your working copy for which you want to release the
lock, then select the command TortoiseSVN → Release Lock There is nothing further to enter so
TortoiseSVN will contact the repository and release the locks. You can also use this command on a folder
to release all locks recursively.

4.21.4. Kontrola stavu zamknutia

Obrázok 4.42. Dialóg kontroly zmien

To see what locks you and others hold, you can use TortoiseSVN → Check for Modifications.... Locally
held lock tokens show up immediately. To check for locks held by others (and to see if any of your locks
are broken or stolen) you need to click on Check Repository.

From the context menu here, you can also get and release locks, as well as breaking and stealing locks
held by others.

Avoid Breaking and Stealing Locks

If you break or steal someone else's lock without telling them, you could potentially cause
loss of work. If you are working with unmergeable file types and you steal someone else's
lock, once you release the lock they are free to check in their changes and overwrite yours.

Sprievodca denného použitia

111

Subversion doesn't lose data, but you have lost the team-working protection that locking
gave you.

4.21.5. Making Non-locked Files Read-Only

As mentioned above, the most effective way to use locking is to set the svn:needs-lock property
on files. Refer to Oddiel 4.17, “Nastavenia Projektu” for instructions on how to set properties. Files with
this property set will always be checked out and updated with the read-only flag set unless your working
copy holds a lock.

As a reminder, TortoiseSVN uses a special overlay to indicate this.

If you operate a policy where every file has to be locked then you may find it easier to use Subversion's
auto-props feature to set the property automatically every time you add new files. Read Oddiel 4.17.1.5,
“Automatic property setting” for further information.

4.21.6. The Locking Hook Scripts

When you create a new repository with Subversion 1.2 or higher, four hook templates are created in
the repository hooks directory. These are called before and after getting a lock, and before and after
releasing a lock.

It is a good idea to install a post-lock and post-unlock hook script on the server which sends out an
email indicating the file which has been locked. With such a script in place, all your users can be notified
if someone locks/unlocks a file. You can find an example hook script hooks/post-lock.tmpl in
your repository folder.

You might also use hooks to disallow breaking or stealing of locks, or perhaps limit it to a named
administrator. Or maybe you want to email the owner when one of their locks is broken or stolen.

Read Oddiel 3.3, “Serverovské pripnuté (hook) skripty” to find out more.

4.22. Creating and Applying Patches

For open source projects (like this one) everyone has read access to the repository, and anyone can make
a contribution to the project. So how are those contributions controlled? If just anyone could commit
changes, the project would be permanently unstable and probably permanently broken. In this situation
the change is managed by submitting a patch file to the development team, who do have write access.
They can review the patch first, and then either submit it to the repository or reject it back to the author.

Patch files are simply Unified-Diff files showing the differences between your working copy and the
base revision.

4.22.1. Tvorba súboru záplaty

First you need to make and test your changes. Then instead of using TortoiseSVN → Commit... on the
parent folder, you select TortoiseSVN → Create Patch...

Sprievodca denného použitia

112

Obrázok 4.43. Dialóg Tvroby záplaty

you can now select the files you want included in the patch, just as you would with a full commit. This
will produce a single file containing a summary of all the changes you have made to the selected files
since the last update from the repository.

The columns in this dialog can be customized in the same way as the columns in the Check for
modifications dialog. Read Oddiel 4.7.3, “Miestny a vzdialeny stav” for further details.

You can produce separate patches containing changes to different sets of files. Of course, if you create
a patch file, make some more changes to the same files and then create another patch, the second patch
file will include both sets of changes.

Just save the file using a filename of your choice. Patch files can have any extension you like, but by
convention they should use the .patch or .diff extension. You are now ready to submit your patch
file.

You can also save the patch to the clipboard instead of to a file. You might want to do this so that you can
paste it into an email for review by others. Or if you have two working copies on one machine and you
want to transfer changes from one to the other, a patch on the clipboard is a convenient way of doing this.

4.22.2. Použitie záplaty

Patch files are applied to your working copy. This should be done from the same folder level as was used
to create the patch. If you are not sure what this is, just look at the first line of the patch file. For example,
if the first file being worked on was doc/source/english/chapter1.xml and the first line in
the patch file is Index: english/chapter1.xml then you need to apply the patch to the doc/
source/ folder. However, provided you are in the correct working copy, if you pick the wrong folder
level, TortoiseSVN will notice and suggest the correct level.

In order to apply a patch file to your working copy, you need to have at least read access to the repository.
The reason for this is that the merge program must reference the changes back to the revision against
which they were made by the remote developer.

From the context menu for that folder, click on TortoiseSVN → Apply Patch... This will bring up a
file open dialog allowing you to select the patch file to apply. By default only .patch or .diff files

Sprievodca denného použitia

113

are shown, but you can opt for “All files”. If you previously saved a patch to the clipboard, you can use
Open from clipboard... in the file open dialog.

Alternatively, if the patch file has a .patch or .diff extension, you can right click on it directly
and select TortoiseSVN → Apply Patch.... In this case you will be prompted to enter a working copy
location.

These two methods just offer different ways of doing the same thing. With the first method you select the
WC and browse to the patch file. With the second you select the patch file and browse to the WC.

Once you have selected the patch file and working copy location, TortoiseMerge runs to merge the
changes from the patch file with your working copy. A small window lists the files which have been
changed. Double click on each one in turn, review the changes and save the merged files.

The remote developer's patch has now been applied to your working copy, so you need to commit to
allow everyone else to access the changes from the repository.

4.23. Who Changed Which Line?

Sometimes you need to know not only what lines have changed, but also who exactly changed specific
lines in a file. That's when the TortoiseSVN → Blame... command, sometimes also referred to as
annotate command comes in handy.

This command lists, for every line in a file, the author and the revision the line was changed.

4.23.1. Blame for Files

Obrázok 4.44. The Annotate / Blame Dialog

If you're not interested in changes from earlier revisions you can set the revision from which the blame
should start. Set this to 1, if you want the blame for every revision.

By default the blame file is viewed using TortoiseBlame, which highlights the different revisions to make
it easier to read. If you wish to print or edit the blame file, select Use Text viewer to view blames

Sprievodca denného použitia

114

You can specify the way that line ending and whitespace changes are handled. These options are described
in Oddiel 4.10.2, “Line-end and Whitespace Options”. The default behaviour is to treat all whitespace
and line-end differences as real changes, but if you want to ignore an indentation change and find the
original author, you can choose an appropriate option here.

Once you press OK TortoiseSVN starts retrieving the data to create the blame file. Please note: This can
take several minutes to finish, depending on how much the file has changed and of course your network
connection to the repository. Once the blame process has finished the result is written into a temporary
file and you can view the results.

Obrázok 4.45. TortoiseBlame

TortoiseBlame, which is included with TortoiseSVN, makes the blame file easier to read. When you hover
the mouse over a line in the blame info column, all lines with the same revision are shown with a darker
background. Lines from other revisions which were changed by the same author are shown with a light
background. The colouring may not work as clearly if you have your display set to 256 colour mode.

If you left click on a line, all lines with the same revision are highlighted, and lines from other revisions
by the same author are highlighted in a lighter colour. This highlighting is sticky, allowing you to move
the mouse without losing the highlights. Click on that revision again to turn off highlighting.

The revision comments (log message) are shown in a hint box whenever the mouse hovers over the blame
info column. If you want to copy the log message for that revision, use the context menu which appears
when you right click on the blame info column.

You can search within the Blame report using Edit → Find.... This allows you to search for revision
numbers, authors and the content of the file itself. Log messages are not included in the search - you
should use the Log Dialog to search those.

You can also jump to a specific line number using Edit → Go To Line....

When the mouse is over the blame info columns, a context menu is available which helps with comparing
revisions and examining history, using the revision number of the line under the mouse as a reference.
Context menu → Blame previous revision generates a blame report for the same file, but using the

Sprievodca denného použitia

115

previous revision as the upper limit. This gives you the blame report for the state of the file just before
the line you are looking at was last changed. Context menu → Show changes starts your diff viewer,
showing you what changed in the referenced revision. Context menu → Show log displays the revision
log dialog starting with the referenced revision.

If you need a better visual indicator of where the oldest and newest changes are, select View → Color
age of lines. This will use a colour gradient to show newer lines in red and older lines in blue. The default
colouring is quite light, but you can change it using the TortoiseBlame settings.

If you are using Merge Tracking, where lines have changed as a result of merging from another path,
TortoiseBlame will show the revision and author of the last change in the original file rather than the
revision where the merge took place. These lines are indicated by showing the revision and author in
italics. If you do not want merged lines shown in this way, uncheck the Include merge info checkbox.

If you want to see the paths involved in the merge, select View → Merge paths.

The settings for TortoiseBlame can be accessed using TortoiseSVN → Settings... on the TortoiseBlame
tab. Refer to Oddiel 4.30.9, “Nastavenia TortoiseBlame”.

4.23.2. Obviniť rozdiely

One of the limitations of the Blame report is that it only shows the file as it was in a particular revision,
and shows the last person to change each line. Sometimes you want to know what change was made, as
well as who made it. What you need here is a combination of the diff and blame reports.

The revision log dialog includes several options which allow you to do this.

Obviniť revízie
In the top pane, select 2 revisions, then select Context menu → Blame revisions. This will fetch
the blame data for the 2 revisions, then use the diff viewer to compare the two blame files.

Obviniť zmeny
Select one revision in the top pane, then pick one file in the bottom pane and select Context menu →
Blame changes. This will fetch the blame data for the selected revision and the previous revision,
then use the diff viewer to compare the two blame files.

Compare and Blame with Working BASE
Show the log for a single file, and in the top pane, select a single revision, then select Context menu
→ Compare and Blame with Working BASE. This will fetch the blame data for the selected
revision, and for the file in the working BASE, then use the diff viewer to compare the two blame
files.

4.24. Prezeranie úložiska

Sometimes you need to work directly on the repository, without having a working copy. That's what the
Repository Browser is for. Just as the explorer and the icon overlays allow you to view your working
copy, so the Repository Browser allows you to view the structure and status of the repository.

Sprievodca denného použitia

116

Obrázok 4.46. Prezeranie úložiska

With the Repository Browser you can execute commands like copy, move, rename, ... directly on the
repository.

The repository browser looks very similar to the Windows explorer, except that it is showing the content
of the repository at a particular revision rather than files on your computer. In the left pane you can see a
directory tree, and in the right pane are the contents of the selected directory. At the top of the Repository
Browser Window you can enter the URL of the repository and the revision you want to browse.

Just like Windows explorer, you can click on the column headings in the right pane if you want to set the
sort order. And as in explorer there are context menus available in both panes.

The context menu for a file allows you to:

• Open the selected file, either with the default viewer for that file type, or with a program you choose.

• Save an unversioned copy of the file to your hard drive.

• Show the revision log for that file, or show a graph of all revisions so you can see where the file came
from.

• Blame the file, to see who changed which line and when.

• Delete or rename the file.

• Make a copy of the file, either to a different part of the repository, or to a working copy rooted in the
same repository.

• View/Edit the file's properties.

The context menu for a folder allows you to:

• Show the revision log for that folder, or show a graph of all revisions so you can see where the folder
came from.

Sprievodca denného použitia

117

• Export the folder to a local unversioned copy on your hard drive.

• Checkout the folder to produce a local working copy on your hard drive.

• Vytvorí nový adresár v úložisku.

• Vytvorí súbory, alebo adresáre priamo do úložiska.

• Delete or rename the folder.

• Make a copy of the folder, either to a different part of the repository, or to a working copy rooted in
the same repository.

• View/Edit the folder's properties.

• Mark the folder for comparison. A marked folder is shown in bold.

• Compare the folder with a previously marked folder, either as a unified diff, or as a list of changed
files which can then be visually diffed using the default diff tool. This can be particularly useful for
comparing two tags, or trunk and branch to see what changed.

If you select two folders in the right pane, you can view the differences either as a unified-diff, or as a
list of files which can be visually diffed using the default diff tool.

If you select multiple folders in the right pane, you can checkout all of them at once into a common
parent folder.

If you select 2 tags which are copied from the same root (typically /trunk/), you can use Context
Menu → Show Log... to view the list of revisions between the two tag points.

You can use F5 to refresh the view as usual. This will refresh everything which is currently displayed.
If you want to pre-fetch or refresh the information for nodes which have not been opened yet, use Ctrl-
F5. After that, expanding any node will happen instantly without a network delay while the information
is fetched.

You can also use the repository browser for drag-and-drop operations. If you drag a folder from explorer
into the repo-browser, it will be imported into the repository. Note that if you drag multiple items, they
will be imported in separate commits.

If you want to move an item within the repository, just left drag it to the new location. If you want to
create a copy rather than moving the item, Ctrl-left drag instead. When copying, the cursor has a “plus”
symbol on it, just as it does in Explorer.

If you want to copy/move a file or folder to another location and also give it a new name at the same time,
you can right drag or Ctrl-right drag the item instead of using left drag. In that case, a rename dialog is
shown where you can enter a new name for the file or folder.

Whenever you make changes in the repository using one of these methods, you will be presented with
a log message entry dialog. If you dragged something by mistake, this is also your chance to cancel the
action.

Sometimes when you try to open a path you will get an error message in place of the item details. This
might happen if you specified an invalid URL, or if you don't have access permission, or if there is some
other server problem. If you need to copy this message to include it in an email, just right click on it and
use Context Menu → Copy error message to clipboard, or simply use Ctrl+C.

4.25. Graf revízií

Sprievodca denného použitia

118

Obrázok 4.47. Graf revízií

Sometimes you need to know where branches and tags were taken from the trunk, and the ideal way to
view this sort of information is as a graph or tree structure. That's when you need to use TortoiseSVN
→ Revision Graph...

This command analyses the revision history and attempts to create a tree showing the points at which
copies were taken, and when branches/tags were deleted.

Dôležité

In order to generate the graph, TortoiseSVN must fetch all log messages from the repository
root. Needless to say this can take several minutes even with a repository of a few thousand
revisions, depending on server speed, network bandwidth, etc. If you try this with something
like the Apache project which currently has over 500,000 revisions you could be waiting
for some time.

The good news is that if you are using log caching, you only have to suffer this delay once.
After that, log data is held locally. Log caching is enabled in TortoiseSVN's settings.

4.25.1. Uzly grafu revizií

Each revision graph node represents a revision in the repository where something changed in the tree you
are looking at. Different types of node can be distinguished by shape and colour. The shapes are fixed,
but colours can be set using TortoiseSVN → Settings

Sprievodca denného použitia

119

Added or copied items
Items which have been added, or created by copying another file/folder are shown using a rounded
rectangle. The default colour is green. Tags and trunks are treated as a special case and use a different
shade, depending on the TortoiseSVN → Settings

Vymazané objekty
Deleted items eg. a branch which is no longer required, are shown using an octagon (rectangle with
corners cut off). The default colour is red.

Premenované objekty
Renamed items are also shown using an octagon, but the default colour is blue.

Branch tip revision
The graph is normally restricted to showing branch points, but it is often useful to be able to see the
respective HEAD revision for each branch too. If you select Show HEAD revisions, each HEAD
revision nodes will be shown as an ellipse. Note that HEAD here refers to the last revision committed
on that path, not to the HEAD revision of the repository.

Working copy revision
If you invoked the revision graph from a working copy, you can opt to show the BASE revision on
the graph using Show WC revision, which marks the BASE node with a bold outline.

Modified working copy
If you invoked the revision graph from a working copy, you can opt to show an additional node
representing your modified working copy using Show WC modifications. This is an elliptical node
with a bold outline in red by default.

Normal item
All other items are shown using a plain rectangle.

Note that by default the graph only shows the points at which items were added, copied or deleted.
Showing every revision of a project will generate a very large graph for non-trivial cases. If you really
want to see all revisions where changes were made, there is an option to do this in the View menu and
on the toolbar.

The default view (grouping off) places the nodes such that their vertical position is in strict revision order,
so you have a visual cue for the order in which things were done. Where two nodes are in the same
column the order is very obvious. When two nodes are in adjacent columns the offset is much smaller
because there is no need to prevent the nodes from overlapping, and as a result the order is a little less
obvious. Such optimisations are necessary to keep complex graphs to a reasonable size. Please note that
this ordering uses the edge of the node on the older side as a reference, i.e. the bottom edge of the node
when the graph is shown with oldest node at the bottom. The reference edge is significant because the
node shapes are not all the same height.

4.25.2. Changing the View

Because a revision graph is often quite complex, there are a number of features which can be used to
tailor the view the way you want it. These are available in the View menu and from the toolbar.

Skupina vetiev
The default behavior (grouping off) has all rows sorted strictly by revision. As a result, long-living
branches with sparse commits occupy a whole column for only a few changes and the graph becomes
very broad.

This mode groups changes by branch, so that there is no global revision ordering: Consecutive
revisions on a branch will be shown in (often) consecutive lines. Sub-branches, however, are arranged
in such a way that later branches will be shown in the same column above older branches to keep the
graph slim. As a result, a given row may contain changes from different revisions.

Sprievodca denného použitia

120

Najstaršie hore
Normally the graph shows the oldest revision at the bottom, and the tree grows upwards. Use this
option to grow down from the top instead.

Align trees on top
When a graph is broken into several smaller trees, the trees may appear either in natural revision order,
or aligned at the bottom of the window, depending on whether you are using the Group Branches
option. Use this option to grow all trees down from the top instead.

Reduce cross lines
If the layout of the graph has produced a lot of crossing lines, use this option to clean it up. This may
make the layout columns appear in less logical places, for example in a diagonal line rather than a
column, and the graph may require a larger area to draw.

Differential path names
Long path names can take a lot of space and make the node boxes very large. Use this option to
show only the changed part of a path, replacing the common part with dots. E.g. if you create a
branch /branches/1.2.x/doc/html from /trunk/doc/html the branch could be shown
in compact form as /branches/1.2.x/.. because the last two levels, doc and html, did not
change.

Zobraziť všetky revízie
This does just what you expect and shows every revision where something (in the tree that you are
graphing) has changed. For long histories this can produce a truly huge graph.

Zobraziť HEAD(Hlavné) revízie
This ensures that the latest revision on every branch is always shown on the graph.

Exact copy sources
When a branch/tag is made, the default behaviour is to show the branch as taken from the last node
where a change was made. Strictly speaking this is inaccurate since the branches are often made from
the current HEAD rather than a specific revision. So it is possible to show the more correct (but less
useful) revision that was used to create the copy. Note that this revision may be younger than the
HEAD revision of the source branch.

Fold tags
When a project has many tags, showing every tag as a separate node on the graph takes a lot of space
and obscures the more interesting development branch structure. At the same time you may need
to be able to access the tag content easily so that you can compare revisions. This option hides the
nodes for tags and shows them instead in the tooltip for the node that they were copied from. A tag
icon on the right side of the source node indicates that tags were made.

Hide deleted paths
Hides paths which are no longer present at the HEAD revision of the repository, e.g. deleted branches.

Hide unchanged branches
Hides branches where no changes were committed to the respective file or sub-folder. This does not
necessarily indicate that the branch was not used, just that no changes were made to this part of it.

Zobraziť revíziu WC(pracovná kópia)
Marks the revision on the graph which corresponds to the update revision of the item you fetched
the graph for. If you have just updated, this will be HEAD, but if others have committed changes
since your last update your WC may be a few revisions lower down. The node is marked by giving
it a bold outline.

Zobraziť zmeny WC(pracovná kópia)
If your WC contains local changes, this option draws it as a separate elliptical node, linked back to
the node that your WC was last updated to. The default outline colour is red. You may need to refresh
the graph using F5 to capture recent changes.

Sprievodca denného použitia

121

Filter
Sometimes the revision graph contains more revisions than you want to see. This option opens a
dialog which allows you to restrict the range of revisions displayed, and to hide particular paths by
name.

Tree stripes
Where the graph contains several trees, it is sometimes useful to use alternating colours on the
background to help distinguish between trees.

Show overview
Shows a small picture of the entire graph, with the current view window as a rectangle which you can
drag. This allows you to navigate the graph more easily. Note that for very large graphs the overview
may become useless due to the extreme zoom factor and will therefore not be shown in such cases.

4.25.3. Použitie grafu

To make it easier to navigate a large graph, use the overview window. This shows the entire graph in
a small window, with the currently displayed portion highlighted. You can drag the highlighted area to
change the displayed region.

The revision date, author and comments are shown in a hint box whenever the mouse hovers over a
revision box.

If you select two revisions (Use Ctrl-left click), you can use the context menu to show the differences
between these revisions. You can choose to show differences as at the branch creation points, but usually
you will want to show the differences at the branch end points, i.e. at the HEAD revision.

You can view the differences as a Unified-Diff file, which shows all differences in a single file with
minimal context. If you opt to Context Menu → Compare Revisions you will be presented with a list
of changed files. Double click on a file name to fetch both revisions of the file and compare them using
the visual difference tool.

If you right click on a revision you can use Context Menu → Show Log to view the history.

You can also merge changes in the selected revision(s) into a different working copy. A folder selection
dialog allows you to choose the working copy to merge into, but after that there is no confirmation dialog,
nor any opportunity to try a test merge. It is a good idea to merge into an unmodified working copy so that
you can revert the changes if it doesn't work out! This is a useful feature if you want to merge selected
revisions from one branch to another.

Learn to Read the Revision Graph

First-time users may be surprised by the fact that the revision graph shows something that
does not match the user's mental model. If a revision changes multiple copies or branches
of a file or folder, for instance, then there will be multiple nodes for that single revision. It
is a good practice to start with the leftmost options in the toolbar and customize the graph
step-by-step until it comes close to your mental model.

All filter options try lose as little information as possible. That may cause some nodes
to change their color, for instance. Whenever the result is unexpected, undo the last filter
operation and try to understand what is special about that particular revision or branch. In
most cases, the initially expected outcome of the filter operation would either be inaccurate
or misleading.

4.25.4. Refreshing the View

If you want to check the server again for newer information, you can simply refresh the view using F5.
If you are using the log cache (enabled by default), this will check the repository for newer commits and
fetch only the new ones. If the log cache was in offline mode, this will also attempt to go back online.

Sprievodca denného použitia

122

If you are using the log cache and you think the message content or author may have changed, you should
use the log dialog to refresh the messages you need. Since the revision graph works from the repository
root, we would have to invalidate the entire log cache, and refilling it could take a very long time.

4.25.5. Pruning Trees

A large tree can be difficult to navigate and sometimes you will want to hide parts of it, or break it down
into a forest of smaller trees. If you hover the mouse over the point where a node link enters or leaves the
node you will see one or more popup buttons which allow you to do this.

Click on the minus button to collapse the attached sub-tree.

Click on the plus button to expand a collapsed tree. When a tree has been collapsed, this button remains
visible to indicate the hidden sub-tree.

Click on the cross button to split the attached sub-tree and show it as a separate tree on the graph.

Click on the circle button to reattach a split tree. When a tree has been split away, this button remains
visible to indicate that there is a separate sub-tree.

Click on the graph background for the main context menu, which offers options to Expand all and Join
all. If no branch has been collapsed or split, the context menu will not be shown.

4.26. Exporting a Subversion Working Copy

Sometimes you may want a copy of your working tree without any of those .svn directories, e.g.
to create a zipped tarball of your source, or to export to a web server. Instead of making a copy and
then deleting all those .svn directories manually, TortoiseSVN offers the command TortoiseSVN →
Export.... Exporting from a URL and exporting from a working copy are treated slightly differently.

Sprievodca denného použitia

123

Obrázok 4.48. The Export-from-URL Dialog

If you execute this command on an unversioned folder, TortoiseSVN will assume that the selected folder
is the target, and open a dialog for you to enter the URL and revision to export from. This dialog has
options to export only the top level folder, to omit external references, and to override the line end style
for files which have the svn:eol-style property set.

Of course you can export directly from the repository too. Use the Repository Browser to navigate to the
relevant subtree in your repository, then use Context Menu → Export. You will get the Export from
URL dialog described above.

If you execute this command on your working copy you'll be asked for a place to save the clean working
copy without the .svn folders. By default, only the versioned files are exported, but you can use the
Export unversioned files too checkbox to include any other unversioned files which exist in your WC
and not in the repository. External references using svn:externals can be omitted if required.

Another way to export from a working copy is to right drag the working copy folder to another location
and choose Context Menu → SVN Export here or Context Menu → SVN Export all here. The
second option includes the unversioned files as well.

When exporting from a working copy, if the target folder already contains a folder of the same name as
the one you are exporting, you will be given the option to overwrite the existing content, or to create a
new folder with an automatically generated name, eg. Target (1).

Exportovanie jednotlivých súborov

The export dialog does not allow exporting single files, even though Subversion can.

To export single files with TortoiseSVN, you have to use the repository browser
(Oddiel 4.24, “Prezeranie úložiska”). Simply drag the file(s) you want to export from the
repository browser to where you want them in the explorer, or use the context menu in the
repository browser to export the files.

Sprievodca denného použitia

124

Exporting a Change Tree

If you want to export a copy of your project tree structure but containing only the files
which have changed in a particular revision, or between any two revisions, use the compare
revisions feature described in Oddiel 4.10.3, “Porovavanie adresárov”.

4.26.1. Removing a working copy from version control

Sometimes you have a working copy which you want to convert back to a normal folder without the
.svn directories. What you really need is an export-in-place command, that just removes the control
directories rather than generating a new clean directory tree.

The answer is surprisingly simple - export the folder to itself! TortoiseSVN detects this special case and
asks if you want to make the working copy unversioned. If you answer yes the control directories will be
removed and you will have a plain, unversioned directory tree.

4.27. Premiestnenie pracovnej kópie

Obrázok 4.49. Dialógové okno premiesnenia

If your repository has for some reason changed it's location (IP/URL). Maybe you're even stuck and can't
commit and you don't want to checkout your working copy again from the new location and to move all
your changed data back into the new working copy, TortoiseSVN → Relocate is the command you are
looking for. It basically does very little: it scans all entries files in the .svn folder and changes the
URL of the entries to the new value.

You may be surprised to find that TortoiseSVN contacts the repository as part of this operation. All it is
doing is performing some simple checks to make sure that the new URL really does refer to the same
repository as the existing working copy.

Varovanie

This is a very infrequently used operation. The relocate command is only used if the URL
of the repository root has changed. Possible reasons are:

• The IP address of the server has changed.

• The protocol has changed (e.g. http:// to https://).

• The repository root path in the server setup has changed.

Sprievodca denného použitia

125

Put another way, you need to relocate when your working copy is referring to the same
location in the same repository, but the repository itself has moved.

It does not apply if:

• You want to move to a different Subversion repository. In that case you should perform
a clean checkout from the new repository location.

• You want to switch to a different branch or directory within the same repository. To do
that you should use TortoiseSVN → Switch.... Read Oddiel 4.19.2, “To Checkout or to
Switch...” for more information.

If you use relocate in either of the cases above, it will corrupt your working copy and you
will get many unexplainable error messages while updating, committing, etc. Once that has
happened, the only fix is a fresh checkout.

4.28. Integration with Bug Tracking Systems / Issue Trackers

It is very common in Software Development for changes to be related to a specific bug or issue ID. Users
of bug tracking systems (issue trackers) would like to associate the changes they make in Subversion
with a specific ID in their issue tracker. Most issue trackers therefore provide a pre-commit hook script
which parses the log message to find the bug ID with which the commit is associated. This is somewhat
error prone since it relies on the user to write the log message properly so that the pre-commit hook script
can parse it correctly.

TortoiseSVN can help the user in two ways:

1. When the user enters a log message, a well defined line including the issue number associated with
the commit can be added automatically. This reduces the risk that the user enters the issue number in
a way the bug tracking tools can't parse correctly.

Or TortoiseSVN can highlight the part of the entered log message which is recognized by the issue
tracker. That way the user knows that the log message can be parsed correctly.

2. When the user browses the log messages, TortoiseSVN creates a link out of each bug ID in the log
message which fires up the browser to the issue mentioned.

4.28.1. Adding Issue Numbers to Log Messages

You can integrate a bug tracking tool of your choice in TortoiseSVN. To do this, you have to define
some properties, which start with bugtraq:. They must be set on Folders: (Oddiel 4.17, “Nastavenia
Projektu”)

There are two ways to integrate TortoiseSVN with issue trackers. One is based on simple strings, the
other is based on regular expressions. The properties used by both approaches are:

bugtraq:url
Set this property to the URL of your bug tracking tool. It must be properly URI encoded and it
has to contain %BUGID%. %BUGID% is replaced with the Issue number you entered. This allows
TortoiseSVN to display a link in the log dialog, so when you are looking at the revision log you
can jump directly to your bug tracking tool. You do not have to provide this property, but then
TortoiseSVN shows only the issue number and not the link to it. e.g the TortoiseSVN project is using
http://issues.tortoisesvn.net/?do=details&id=%BUGID%

You can also use relative URLs instead of absolute ones. This is useful when your issue tracker is on
the same domain/server as your source repository. In case the domain name ever changes, you don't
have to adjust the bugtraq:url property. There are two ways to specify a relative URL:

Sprievodca denného použitia

126

If it begins with the string ^/ it is assumed to be relative to the repository root. For example,
^/../?do=details&id=%BUGID% will resolve to http://tortoisesvn.net/?
do=details&id=%BUGID% if your repository is located on http://tortoisesvn.net/
svn/trunk/.

A URL beginning with the string / is assumed to be relative to the server's hostname. For
example /?do=details&id=%BUGID% will resolve to http://tortoisesvn.net/?
do=details&id=%BUGID% if your repository is located anywhere on http://
tortoisesvn.net.

bugtraq:warnifnoissue
Set this to true, if you want TortoiseSVN to warn you because of an empty issue-number text field.
Valid values are true/false. If not defined, false is assumed.

4.28.1.1. Issue Number in Text Box

In the simple approach, TortoiseSVN shows the user a separate input field where a bug ID can be entered.
Then a separate line is appended/prepended to the log message the user entered.

bugtraq:message
This property activates the bug tracking system in Input field mode. If this property is set, then
TortoiseSVN will prompt you to enter an issue number when you commit your changes. It's used
to add a line at the end of the log message. It must contain %BUGID%, which is replaced with the
issue number on commit. This ensures that your commit log contains a reference to the issue number
which is always in a consistent format and can be parsed by your bug tracking tool to associate the
issue number with a particular commit. As an example you might use Issue : %BUGID%, but
this depends on your Tool.

bugtraq:append
This property defines if the bug-ID is appended (true) to the end of the log message or inserted (false)
at the start of the log message. Valid values are true/false. If not defined, true is assumed,
so that existing projects don't break.

bugtraq:label
This text is shown by TortoiseSVN on the commit dialog to label the edit box where you enter the
issue number. If it's not set, Bug-ID / Issue-Nr: will be displayed. Keep in mind though that
the window will not be resized to fit this label, so keep the size of the label below 20-25 characters.

bugtraq:number
If set to true only numbers are allowed in the issue-number text field. An exception is the comma,
so you can comma separate several numbers. Valid values are true/false. If not defined, true
is assumed.

4.28.1.2. Issue Numbers Using Regular Expressions

In the approach with regular expressions, TortoiseSVN doesn't show a separate input field but marks the
part of the log message the user enters which is recognized by the issue tracker. This is done while the
user writes the log message. This also means that the bug ID can be anywhere inside a log message! This
method is much more flexible, and is the one used by the TortoiseSVN project itself.

bugtraq:logregex
This property activates the bug tracking system in Regex mode. It contains either a single regular
expressions, or two regular expressions separated by a newline.

If two expressions are set, then the first expression is used as a pre-filter to find expressions which
contain bug IDs. The second expression then extracts the bare bug IDs from the result of the first
regex. This allows you to use a list of bug IDs and natural language expressions if you wish. e.g.
you might fix several bugs and include a string something like this: “This change resolves issues
#23, #24 and #25”

Sprievodca denného použitia

127

If you want to catch bug IDs as used in the expression above inside a log message, you could use
the following regex strings, which are the ones used by the TortoiseSVN project: [Ii]ssues?:?
(\s*(,|and)?\s*#\d+)+ and (\d+)

The first expression picks out “issues #23, #24 and #25” from the surrounding log message. The
second regex extracts plain decimal numbers from the output of the first regex, so it will return “23”,
“24” and “25” to use as bug IDs.

Breaking the first regex down a little, it must start with the word “issue”, possibly capitalised. This
is optionally followed by an “s” (more than one issue) and optionally a colon. This is followed by
one or more groups each having zero or more leading whitespace, an optional comma or “and” and
more optional space. Finally there is a mandatory “#” and a mandatory decimal number.

If only one expression is set, then the bare bug IDs must be matched in the groups of the regex string.
Example: [Ii]ssue(?:s)? #?(\d+) This method is required by a few issue trackers, e.g. trac,
but it is harder to construct the regex. We recommend that you only use this method if your issue
tracker documentation tells you to.

If you are unfamiliar with regular expressions, take a look at the introduction at http://
en.wikipedia.org/wiki/Regular_expression, and the online documentation and tutorial at http://
www.regular-expressions.info/.

If both the bugtraq:message and bugtraq:logregex properties are set, logregex takes
precedence.

Tip

Even if you don't have an issue tracker with a pre-commit hook parsing your log messages,
you still can use this to turn the issues mentioned in your log messages into links!

And even if you don't need the links, the issue numbers show up as a separate column in
the log dialog, making it easier to find the changes which relate to a particular issue.

Some tsvn: properties require a true/false value. TortoiseSVN also understands yes as a synonym
for true and no as a synonym for false.

Set the Properties on Folders

These properties must be set on folders for the system to work. When you commit a file
or folder the properties are read from that folder. If the properties are not found there,
TortoiseSVN will search upwards through the folder tree to find them until it comes to an
unversioned folder, or the tree root (eg. C:\) is found. If you can be sure that each user
checks out only from e.g trunk/ and not some sub-folder, then it's enough if you set the
properties on trunk/. If you can't be sure, you should set the properties recursively on
each sub-folder. A property setting deeper in the project hierarchy overrides settings on
higher levels (closer to trunk/).

For tsvn: properties only you can use the Recursive checkbox to set the property to all
sub-folders in the hierarchy, without also setting it on all files.

No Issue Tracker Information from Repository Browser

Because the issue tracker integration depends upon accessing subversion properties, you
will only see the results when using a checked out working copy. Fetching properties
remotely is a slow operation, so you will not see this feature in action from the repo browser.

This issue tracker integration is not restricted to TortoiseSVN; it can be used with any
Subversion client. For more information, read the full Issue Tracker Integration Specification [http://

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://tortoisesvn.googlecode.com/svn/trunk/doc/issuetrackers.txt
http://tortoisesvn.googlecode.com/svn/trunk/doc/issuetrackers.txt

Sprievodca denného použitia

128

tortoisesvn.googlecode.com/svn/trunk/doc/issuetrackers.txt] in the TortoiseSVN source repository.
(Oddiel 3, “TortoiseSVN je zdarma!” explains how to access the repository).

4.28.2. Getting Information from the Issue Tracker

The previous section deals with adding issue information to the log messages. But what if you need to get
information from the issue tracker? The commit dialog has a COM interface which allows integration an
external program that can talk to your tracker. Typically you might want to query the tracker to get a list
of open issues assigned to you, so that you can pick the issues that are being addressed in this commit.

Any such interface is of course highly specific to your issue tracker system, so we cannot provide this
part, and describing how to create such a program is beyond the scope of this manual. The interface
definition and sample plugins in C# and C++/ATL can be obtained from the contrib folder in
the TortoiseSVN repository [http://tortoisesvn.googlecode.com/svn/trunk/contrib/issue-tracker-plugins].
(Oddiel 3, “TortoiseSVN je zdarma!” explains how to access the repository). A summary of the API is also
given in Kapitola 6, IBugtraqProvider interface Another (working) example plugin in C# is Gurtle [http://
code.google.com/p/gurtle/] which implements the required COM interface to interact with the Google
Code [http://code.google.com/hosting/] issue tracker.

For illustration purposes, let's suppose that your system administrator has provided you with an issue
tracker plugin which you have installed, and that you have set up some of your working copies to use
the plugin in TortoiseSVN's settings dialog. When you open the commit dialog from a working copy to
which the plugin has been assigned, you will see a new button at the top of the dialog.

Obrázok 4.50. Example issue tracker query dialog

http://tortoisesvn.googlecode.com/svn/trunk/doc/issuetrackers.txt
http://tortoisesvn.googlecode.com/svn/trunk/contrib/issue-tracker-plugins
http://tortoisesvn.googlecode.com/svn/trunk/contrib/issue-tracker-plugins
http://code.google.com/p/gurtle/
http://code.google.com/p/gurtle/
http://code.google.com/p/gurtle/
http://code.google.com/hosting/
http://code.google.com/hosting/
http://code.google.com/hosting/

Sprievodca denného použitia

129

In this example you can select one or more open issues. The plugin can then generate specially formatted
text which it adds to your log message.

4.29. Integration with Web-based Repository Viewers

There are several web-based repository viewers available for use with Subversion such as ViewVC [http://
www.viewvc.org/] and WebSVN [http://websvn.tigris.org/]. TortoiseSVN provides a means to link with
these viewers.

You can integrate a repo viewer of your choice in TortoiseSVN. To do this, you have to define some
properties which define the linkage. They must be set on Folders: (Oddiel 4.17, “Nastavenia Projektu”)

webviewer:revision
Set this property to the URL of your repo viewer to view all changes in a specific revision. It must
be properly URI encoded and it has to contain %REVISION%. %REVISION% is replaced with the
revision number in question. This allows TortoiseSVN to display a context menu entry in the log
dialog Context Menu → View revision in webviewer

webviewer:pathrevision
Set this property to the URL of your repo viewer to view changes to a specific file in a specific
revision. It must be properly URI encoded and it has to contain %REVISION% and %PATH%. %PATH
% is replaced with the path relative to the repository root. This allows TortoiseSVN to display a
context menu entry in the log dialog Context Menu → View revision and path in webviewer For
example, if you right-click in the log dialog bottom pane on a file entry /trunk/src/file then
the %PATH% in the URL will be replaced with /trunk/src/file.

You can also use relative URLs instead of absolute ones. This is useful in case your web viewer is on the
same domain/server as your source repository. In case the domain name ever changes, you don't have to
adjust the webviewer:revision and webviewer:pathrevision property. The format is the
same as for the bugtraq:url property. See Oddiel 4.28, “Integration with Bug Tracking Systems /
Issue Trackers”.

Set the Properties on Folders

These properties must be set on folders for the system to work. When you commit a file
or folder the properties are read from that folder. If the properties are not found there,
TortoiseSVN will search upwards through the folder tree to find them until it comes to an
unversioned folder, or the tree root (eg. C:\) is found. If you can be sure that each user
checks out only from e.g trunk/ and not some sub-folder, then it's enough if you set the
properties on trunk/. If you can't be sure, you should set the properties recursively on
each sub-folder. A property setting deeper in the project hierarchy overrides settings on
higher levels (closer to trunk/).

For tsvn: properties only you can use the Recursive checkbox to set the property to all
sub-folders in the hierarchy, without also setting it on all files.

No Repo Viewer Links from Repository Browser

Because the repo viewer integration depends upon accessing subversion properties, you will
only see the results when using a checked out working copy. Fetching properties remotely
is a slow operation, so you will not see this feature in action from the repo browser.

4.30. TortoiseSVN Nastavenia

http://www.viewvc.org/
http://www.viewvc.org/
http://www.viewvc.org/
http://websvn.tigris.org/
http://websvn.tigris.org/

Sprievodca denného použitia

130

To find out what the different settings are for, just leave your mouse pointer a second on the editbox/
checkbox... and a helpful tooltip will popup.

4.30.1. Hlavné Nastavenia

Obrázok 4.51. The Settings Dialog, General Page

This dialog allows you to specify your preferred language, and the Subversion-specific settings.

Jazyk
Selects your user interface language. What else did you expect?

Každý týždeň automaticky kontrolovať nové verzie
If checked, TortoiseSVN will contact its download site once a week to see if there is a newer version
of the program available. Use Check now if you want an answer right away. The new version will
not be downloaded; you simply receive an information dialog telling you that the new version is
available.

Systémové zvuky
TortoiseSVN has three custom sounds which are installed by default.

• Chyba

• Poznámka

• Varovanie
You can select different sounds (or turn these sounds off completely) using the Windows Control
Panel. Configure is a shortcut to the Control Panel.

Globálna šablóna vylúčenia

Global ignore patterns are used to prevent unversioned files from showing up e.g. in the commit
dialog. Files matching the patterns are also ignored by an import. Ignore files or directories by typing

Sprievodca denného použitia

131

in the names or extensions. Patterns are separated by spaces e.g. bin obj *.bak *.~?? *.jar
*.[Tt]mp. These patterns should not include any path separators. Note also that there is no way to
differentiate between files and directories. Read Oddiel 4.13.1, “Pattern Matching in Ignore Lists”
for more information on the pattern-matching syntax.

Note that the ignore patterns you specify here will also affect other Subversion clients running on
your PC, including the command line client.

Výstraha

If you use the Subversion configuration file to set a global-ignores pattern, it
will override the settings you make here. The Subversion configuration file is accessed
using the Edit as described below.

This ignore pattern will affect all your projects. It is not versioned, so it will not affect other users.
By contrast you can also use the versioned svn:ignore property to exclude files or directories
from version control. Read Oddiel 4.13, “Ignorovanie súborov a adresárov” for more information.

Set file dates to the “last commit time”
This option tells TortoiseSVN to set the file dates to the last commit time when doing a checkout
or an update. Otherwise TortoiseSVN will use the current date. If you are developing software it
is generally best to use the current date because build systems normally look at the date stamps to
decide which files need compiling. If you use “last commit time” and revert to an older file revision,
your project may not compile as you expect it to.

Konfiguračný súbor Subversion
Use Edit to edit the Subversion configuration file directly. Some settings cannot
be modified directly by TortoiseSVN, and need to be set here instead. For more
information about the Subversion config file see the Runtime Configuration Area [http://
svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html]. The section on Automatic Property
Setting [http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html#svn.advanced.props.auto] is
of particular interest, and that is configured here. Note that Subversion can read
configuration information from several places, and you need to know which one takes
priority. Refer to Configuration and the Windows Registry [http://svnbook.red-bean.com/en/1.5/
svn.advanced.confarea.html#svn.advanced.confarea.windows-registry] to find out more.

Use _svn instead of .svn directories
VS.NET when used with web projects can't handle the .svn folders that Subversion uses to store
its internal information. This is not a bug in Subversion. The bug is in VS.NET and the frontpage
extensions it uses. Read Oddiel 4.30.11, “Pracovné adresáre Subversion” to find out more about this
issue.

If you want to change the behaviour of Subversion and TortoiseSVN, you can use this checkbox to
set the environment variable which controls this.

You should note that changing this option will not automatically convert existing working copies
to use the new admin directory. You will have to do that yourself using a script (See our FAQ) or
simply check out a fresh working copy.

http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html#svn.advanced.props.auto
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html#svn.advanced.props.auto
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html#svn.advanced.props.auto
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html#svn.advanced.confarea.windows-registry
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html#svn.advanced.confarea.windows-registry
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html#svn.advanced.confarea.windows-registry

Sprievodca denného použitia

132

4.30.1.1. Nastavenia kontextového menu

Obrázok 4.52. The Settings Dialog, Context Menu Page

This page allows you to specify which of the TortoiseSVN context menu entries will show up in the main
context menu, and which will appear in the TortoiseSVN submenu. By default most items are unchecked
and appear in the submenu.

There is a special case for Get Lock. You can of course promote it to the top level using the list above,
but as most files don't need locking this just adds clutter. However, a file with the svn:needs-lock
property needs this action every time it is edited, so in that case it is very useful to have at the top level.
Checking the box here means that when a file is selected which has the svn:needs-lock property
set, Get Lock will always appear at the top level.

If there are some paths on your computer where you just don't want TortoiseSVN's context menu to appear
at all, you can list them in the box at the bottom.

Sprievodca denného použitia

133

4.30.1.2. TortoiseSVN Dialog Settings 1

Obrázok 4.53. The Settings Dialog, Dialogs 1 Page

This dialog allows you to configure some of TortoiseSVN's dialogs the way you like them.

Prednastavený počet správ denníka
Limits the number of log messages that TortoiseSVN fetches when you first select TortoiseSVN
→ Show Log Useful for slow server connections. You can always use Show All or Next 100 to
get more messages.

Písmo správ denníka
Selects the font face and size used to display the log message itself in the middle pane of the Revision
Log dialog, and when composing log messages in the Commit dialog.

Krátky formát dátumu/času v správach denníka
If the standard long messages use up too much space on your screen use the short format.

Can double-click in log list to compare with previous revision
If you frequently find yourself comparing revisions in the top pane of the log dialog, you can use
this option to allow that action on double-click. It is not enabled by default because fetching the diff
is often a long process, and many people prefer to avoid the wait after an accidental double-click,
which is why this option is not enabled by default.

Progress Dialog
TortoiseSVN can automatically close all progress dialogs when the action is finished without error.
This setting allows you to select the conditions for closing the dialogs. The default (recommended)
setting is Close manually which allows you to review all messages and check what has happened.
However, you may decide that you want to ignore some types of message and have the dialog close
automatically if there are no critical changes.

Auto-close if no merges, adds or deletes means that the progress dialog will close if there were
simple updates, but if changes from the repository were merged with yours, or if any files were added
or deleted, the dialog will remain open. It will also stay open if there were any conflicts or errors
during the operation.

Sprievodca denného použitia

134

Auto-close if no merges, adds or deletes for local operations means that the progress dialog
will close as for Auto-close if no merges, adds or deletes but only for local operations like adding
files or reverting changes. For remote operations the dialog will stay open.

Auto-close if no conflicts relaxes the criteria further and will close the dialog even if there were
merges, adds or deletes. However, if there were any conflicts or errors, the dialog remains open.

Auto-close if no errors always closes the dialog even if there were conflicts. The only condition
that keeps the dialog open is an error condition, which occurs when Subversion is unable to complete
the task. For example, an update fails because the server is inaccessible, or a commit fails because
the working copy is out-of-date.

Use recycle bin when reverting
When you revert local modifications, your changes are discarded. TortoiseSVN gives you an extra
safety net by sending the modified file to the recycle bin before bringing back the pristine copy. If
you prefer to skip the recycle bin, uncheck this option.

Use URL of WC as the default “From:” URL
In the merge dialog, the default behaviour is for the From: URL to be remembered between merges.
However, some people like to perform merges from many different points in their hierarchy, and find
it easier to start out with the URL of the current working copy. This can then be edited to refer to
a parallel path on another branch.

Default checkout path
You can specify the default path for checkouts. If you keep all your checkouts in one place, it is
useful to have the drive and folder pre-filled so you only have to add the new folder name to the end.

Default checkout URL
You can also specify the default URL for checkouts. If you often checkout sub-projects of some very
large project, it can be useful to have the URL pre-filled so you only have to add the sub-project
name to the end.

4.30.1.3. TortoiseSVN Dialog Settings 2

Obrázok 4.54. The Settings Dialog, Dialogs 2 Page

Sprievodca denného použitia

135

Vnoriť sa do neverziovaných adresárov
If this box is checked (default state), then whenever the status of an unversioned folder is shown in
the Add, Commit or Check for Modifications dialog, every child file and folder is also shown. If
you uncheck this box, only the unversioned parent is shown. Unchecking reduces clutter in these
dialogs. In that case if you select an unversioned folder for Add, it is added recursively.

Use auto-completion of file paths and keywords
The commit dialog includes a facility to parse the list of filenames being committed. When you type
the first 3 letters of an item in the list, the auto-completion box pops up, and you can press Enter to
complete the filename. Check the box to enable this feature.

Timeout in seconds to stop the auto-completion parsing
The auto-completion parser can be quite slow if there are a lot of large files to check. This timeout
stops the commit dialog being held up for too long. If you are missing important auto-completion
information, you can extend the timeout.

Only use spellchecker when tsvn:projectlanguage is set
If you don't wish to use the spellchecker for all commits, check this box. The spellchecker will still
be enabled where the project properties require it.

Maximálny počet záznamov, ktoré majú byť uchované v pamäti správ
When you type in a log message in the commit dialog, TortoiseSVN stores it for possible re-use
later. By default it will keep the last 25 log messages for each repository, but you can customize that
number here. If you have many different repositories, you may wish to reduce this to avoid filling
your registry.

Note that this setting applies only to messages that you type in on this computer. It has nothing to
do with the log cache.

Re-open commit and branch/tag dialog after a commit failed
When a commit fails for some reason (working copy needs updating, pre-commit hook rejects
commit, network error, etc), you can select this option to keep the commit dialog open ready to try
again. However, you should be aware that this can lead to problems. If the failure means you need
to update your working copy, and that update leads to conflicts you must resolve those first.

Select items automatically
The normal behaviour in the commit dialog is for all modified (versioned) items to be selected for
commit automatically. If you prefer to start with nothing selected and pick the items for commit
manually, uncheck this box.

Pripojiť uložisko pri spustení
The Check for Modifications dialog checks the working copy by default, and only contacts the
repository when you click Check repository. If you always want to check the repository, you can
use this setting to make that action happen automatically.

Show Lock dialog before locking files
When you select one or more files and then use TortoiseSVN → Lock to take out a lock on those
files, on some projects it is customary to write a lock message explaining why you have locked the
files. If you do not use lock messages, you can uncheck this box to skip that dialog and lock the
files immediately.

If you use the lock command on a folder, you are always presented with the lock dialog as that also
gives you the option to select files for locking.

If your project is using the tsvn:lockmsgminsize property, you will see the lock dialog
regardless of this setting because the project requires lock messages.

Sprievodca denného použitia

136

4.30.1.4. Nastavenia farieb TortoiseSVN

Obrázok 4.55. The Settings Dialog, Colours Page

This dialog allows you to configure the text colours used in TortoiseSVN's dialogs the way you like them.

Možné alebo skutočné konflikty / prekážky
A conflict has occurred during update, or may occur during merge. Update is obstructed by an existing
unversioned file/folder of the same name as a versioned one.

This colour is also used for error messages in the progress dialogs.

Pridané súbory
Pridané objekty do úložiska

chýbajúce / zmazené / nahradené
Items deleted from the repository, missing from the working copy, or deleted from the working copy
and replaced with another file of the same name.

Zlúčené
Changes from the repository successfully merged into the WC without creating any conflicts.

zmenené / skopírované
Add with history, or paths copied in the repository. Also used in the log dialog for entries which
include copied items.

Vymazaný uzol
An item which has been deleted from the repository.

Pridaný uzlol
An item which has been added to the repository, by an add, copy or move operation.

Premenovaný uzol
An item which has been renamed within the repository.

Sprievodca denného použitia

137

Nahradený uzol
The original item has been deleted and a new item with the same name replaces it.

4.30.2. Nastavenia grafu revizií

Obrázok 4.56. The Settings Dialog, Revision Graph Page

Classification Patterns
The revision graph attempts to show a clearer picture of your repository structure by distinguishing
between trunk, branches and tags. As there is no such classification built into Subversion, this
information is extracted from the path names. The default settings assume that you use the
conventional English names as suggested in the Subversion documentation, but of course your usage
may vary.

Specify the patterns used to recognise these paths in the three boxes provided. The patterns will be
matched case-insensitively, but you must specify them in lower case. Wild cards * and ? will work
as usual, and you can use ; to separate multiple patterns. Do not include any extra white space as
it will be included in the matching specification.

Modify Colors
Colors are used in the revision graph to indicate the node type, i.e. whether a node is added, deleted,
renamed. In order to help pick out node classifications, you can allow the revision graph to blend
colors to give an indication of both node type and classification. If the box is checked, blending is
used. If the box is unchecked, color is used to indicate node type only. Use the color selection dialog
to allocate the specific colors used.

Sprievodca denného použitia

138

4.30.2.1. Farby grafu revízií

Obrázok 4.57. The Settings Dialog, Revision Graph Colors Page

This page allows you to configure the colors used. Note that the color specified here is the solid color.
Most nodes are colored using a blend of the node type color, the background color and optionally the
classification color.

Vymazaný uzol
Items which have been deleted and not copied anywhere else in the same revision.

Pridaný uzlol
Items newly added, or copied (add with history).

Premenovaný uzol
Items deleted from one location and added in another in the same revision.

Zmenený Uzol
Simple modifications without any add or delete.

Nezmenený Uzol
May be used to show the revision used as the source of a copy, even when no change (to the item
being graphed) took place in that revision.

Hlavný (HEAD) uzlol
Current HEAD revision in the repository.

WC Node
If you opt to show an extra node for your modified working copy, attached to its last-commit revision
on the graph, use this color.

WC Node Border
If you opt to show whether the working copy is modified, use this color border on the WC node
when modifications are found.

Sprievodca denného použitia

139

Tag Nodes
Nodes classified as tags may be blended with this color.

Trunk Nodes
Nodes classified as trunk may be blended with this color.

Folded Tag Markers
If you use tag folding to save space, tags are marked on the copy source using a block in this color.

Selected Node Markers
When you left click on a node to select it, the marker used to indicate selection is a block in this color.

Stripes
These colors are used when the graph is split into sub-trees and the background is colored in
alternating stripes to help pick out the separate trees.

4.30.3. Nastavenia prekrývania ikon

Obrázok 4.58. The Settings Dialog, Icon Overlays Page

This page allows you to choose the items for which TortoiseSVN will display icon overlays.

By default, overlay icons and context menus will appear in all open/save dialogs as well as in Windows
Explorer. If you want them to appear only in Windows Explorer, check the Show overlays and context
menu only in explorer box.

Ignored items and Unversioned items are not usually given an overlay. If you want to show an overlay
in these cases, just check the boxes.

You can also choose to mark folders as modified if they contain unversioned items. This could be useful
for reminding you that you have created new files which are not yet versioned. This option is only
available when you use the default status cache option (see below).

Since it takes quite a while to fetch the status of a working copy, TortoiseSVN uses a cache to store the
status so the explorer doesn't get hogged too much when showing the overlays. You can choose which
type of cache TortoiseSVN should use according to your system and working copy size here:

Sprievodca denného použitia

140

Predvolené
Caches all status information in a separate process (TSVNCache.exe). That process watches all
drives for changes and fetches the status again if files inside a working copy get modified. The process
runs with the least possible priority so other programs don't get hogged because of it. That also means
that the status information is not real time but it can take a few seconds for the overlays to change.

Advantage: the overlays show the status recursively, i.e. if a file deep inside a working copy is
modified, all folders up to the working copy root will also show the modified overlay. And since the
process can send notifications to the shell, the overlays on the left tree view usually change too.

Disadvantage: the process runs constantly, even if you're not working on your projects. It also uses
around 10-50 MB of RAM depending on number and size of your working copies.

Šel
Caching is done directly inside the shell extension dll, but only for the currently visible folder. Each
time you navigate to another folder, the status information is fetched again.

Advantage: needs only very little memory (around 1 MB of RAM) and can show the status in real
time.

Disadvantage: Since only one folder is cached, the overlays don't show the status recursively. For
big working copies, it can take more time to show a folder in explorer than with the default cache.
Also the mime-type column is not available.

Žiadne
With this setting, the TortoiseSVN does not fetch the status at all in Explorer. Because of that, files
don't get an overlay and folders only get a 'normal' overlay if they're versioned. No other overlays
are shown, and no extra columns are available either.

Advantage: uses absolutely no additional memory and does not slow down the Explorer at all while
browsing.

Disadvantage: Status information of files and folders is not shown in Explorer. To see if your working
copies are modified, you have to use the “Check for modifications” dialog.

The next group allows you to select which classes of storage should show overlays. By default, only hard
drives are selected. You can even disable all icon overlays, but where's the fun in that?

Network drives can be very slow, so by default icons are not shown for working copies located on network
shares.

USB Flash drives appear to be a special case in that the drive type is identified by the device itself. Some
appear as fixed drives, and some as removable drives.

The Exclude Paths are used to tell TortoiseSVN those paths for which it should not show icon overlays
and status columns. This is useful if you have some very big working copies containing only libraries
which you won't change at all and therefore don't need the overlays. For example:

f:\development\SVN\Subversion will disable the overlays only on that specific folder. You still
can see the overlays on all files and folder inside that folder.

f:\development\SVN\Subversion* will disable the overlays on all files and folders whose path
starts with f:\development\SVN\Subversion. That means you won't see overlays for any files
and folders below that path.

The same applies to the Include Paths. Except that for those paths the overlays are shown even if the
overlays are disabled for that specific drive type, or by an exclude path specified above.

Users sometimes ask how these three settings interact, and the definitive answer is:

Sprievodca denného použitia

141

if (path is in include list)
 show overlays
if (path is allowed drive type) AND (path is not in exclude list)
 show overlays

The include list always makes the overlays show. Otherwise, overlays are shown for all marked drive
types unless the path is excluded.

TSVNCache.exe also uses these paths to restrict its scanning. If you want it to look only in particular
folders, disable all drive types and include only the folders you specifically want to be scanned.

Exclude SUBST Drives

It is often convenient to use a SUBST drive to access your working copies, e.g. using the
command

subst T: C:\TortoiseSVN\trunk\doc

However this can cause the overlays not to update, as TSVNCache will only receive one
notification when a file changes, and that is normally for the original path. This means that
your overlays on the subst path may never be updated.

An easy way to work around this is to exclude the original path from showing overlays, so
that the overlays show up on the subst path instead.

Sometimes you will exclude areas that contain working copies, which saves TSVNCache from scanning
and monitoring for changes, but you still want a visual indication that such folders are versioned. The
Show excluded folders as 'normal' checkbox allows you to do this. With this option, versioned folders
in any excluded area (drive type not checked, or specifically excluded) will show up as normal and up-
to-date, with a green check mark. This reminds you that you are looking at a working copy, even though
the folder overlays may not be correct. Files do not get an overlay at all. Note that the context menus still
work, even though the overlays are not shown.

As a special exception to this, drives A: and B: are never considered for the Show excluded folders
as 'normal' option. This is because Windows is forced to look on the drive, which can result in a delay
of several seconds when starting Explorer, even if your PC does have a floppy drive.

Sprievodca denného použitia

142

4.30.3.1. Nastavenie sady ikon

Obrázok 4.59. The Settings Dialog, Icon Set Page

You can change the overlay icon set to the one you like best. Note that if you change overlay set, you
may have to restart your computer for the changes to take effect.

4.30.4. Sieťové nastavnia

Sprievodca denného použitia

143

Obrázok 4.60. The Settings Dialog, Network Page

Here you can configure your proxy server, if you need one to get through your company's firewall.

If you need to set up per-repository proxy settings, you will need to use the Subversion servers file to
configure this. Use Edit to get there directly. Consult the Runtime Configuration Area [http://svnbook.red-
bean.com/en/1.5/svn.advanced.confarea.html] for details on how to use this file.

You can also specify which program TortoiseSVN should use to establish a secure connection to a svn
+ssh repository. We recommend that you use TortoisePlink.exe. This is a version of the popular Plink
program, and is included with TortoiseSVN, but it is compiled as a Windowless app, so you don't get a
DOS box popping up every time you authenticate.

You must specify the full path to the executable. For TortoisePlink.exe this is the standard TortoiseSVN
bin directory. Use the Browse button to help locate it. Note that if the path contains spaces, you must
enclose it in quotes, e.g.

"C:\Program Files\TortoiseSVN\bin\TortoisePlink.exe"

One side-effect of not having a window is that there is nowhere for any error messages to go, so if
authentication fails you will simply get a message saying something like “Unable to write to standard
output”. For this reason we recommend that you first set up using standard Plink. When everything is
working, you can use TortoisePlink with exactly the same parameters.

TortoisePlink does not have any documentation of its own because it is just a minor variant of Plink.
Find out about command line parameters from the PuTTY website [http://www.chiark.greenend.org.uk/
~sgtatham/putty/]

To avoid being prompted for a password repeatedly, you might also consider using a password caching
tool such as Pageant. This is also available for download from the PuTTY website.

Finally, setting up SSH on server and clients is a non-trivial process which is beyond the scope of this
help file. However, you can find a guide in the TortoiseSVN FAQ listed under Subversion/TortoiseSVN
SSH How-To [http://tortoisesvn.net/ssh_howto].

http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://tortoisesvn.net/ssh_howto
http://tortoisesvn.net/ssh_howto
http://tortoisesvn.net/ssh_howto

Sprievodca denného použitia

144

4.30.5. Nastavnie externých programov

Obrázok 4.61. The Settings Dialog, Diff Viewer Page

Here you can define your own diff/merge programs that TortoiseSVN should use. The default setting is
to use TortoiseMerge which is installed alongside TortoiseSVN.

Read Oddiel 4.10.5, “Externé Porovnávacie/Zlučovacie Nástroje” for a list of some of the external diff/
merge programs that people are using with TortoiseSVN.

4.30.5.1. Prezerač rozdielov

An external diff program may be used for comparing different revisions of files. The external program
will need to obtain the filenames from the command line, along with any other command line options.
TortoiseSVN uses substitution parameters prefixed with %. When it encounters one of these it will
substitute the appropriate value. The order of the parameters will depend on the Diff program you use.

%base
The original file without your changes

%bname
The window title for the base file

%mine
Your own file, with your changes

%yname
The window title for your file

The window titles are not pure filenames. TortoiseSVN treats that as a name to display and creates the
names accordingly. So e.g. if you're doing a diff from a file in revision 123 with a file in your working
copy, the names will be filename : revision 123 and filename : working copy

For example, with ExamDiff Pro:

Sprievodca denného použitia

145

C:\Path-To\ExamDiff.exe %base %mine --left_display_name:%bname
 --right_display_name:%yname

or with KDiff3:

C:\Path-To\kdiff3.exe %base %mine --L1 %bname --L2 %yname

or with WinMerge:

C:\Path-To\WinMerge.exe -e -ub -dl %bname -dr %yname %base %mine

or with Araxis:

C:\Path-To\compare.exe /max /wait /title1:%bname /title2:%yname
 %base %mine

If you use the svn:keywords property to expand keywords, and in particular the revision of a file, then
there may be a difference between files which is purely due to the current value of the keyword. Also if
you use svn:eol-style = native the BASE file will have pure LF line endings whereas your file
will have CR-LF line endings. TortoiseSVN will normally hide these differences automatically by first
parsing the BASE file to expand keywords and line endings before doing the diff operation. However,
this can take a long time with large files. If Convert files when diffing against BASE is unchecked
then TortoiseSVN will skip pre-processing the files.

You can also specify a different diff tool to use on Subversion properties. Since these tend to be short
simple text strings, you may want to use a simpler more compact viewer.

If you have configured an alternate diff tool, you can access TortoiseMerge and the third party tool from
the context menus. Context menu → Diff uses the primary diff tool, and Shift+ Context menu → Diff
uses the secondary diff tool.

4.30.5.2. Spájací nástroj

An external merge program used to resolve conflicted files. Parameter substitution is used in the same
way as with the Diff Program.

%base
the original file without your or the others changes

%bname
The window title for the base file

%mine
your own file, with your changes

%yname
The window title for your file

%theirs
the file as it is in the repository

%tname
The window title for the file in the repository

%merged
the conflicted file, the result of the merge operation

Sprievodca denného použitia

146

%mname
The window title for the merged file

For example, with Perforce Merge:

C:\Path-To\P4Merge.exe %base %theirs %mine %merged

or with KDiff3:

C:\Path-To\kdiff3.exe %base %mine %theirs -o %merged
 --L1 %bname --L2 %yname --L3 %tname

or with Araxis:

C:\Path-To\compare.exe /max /wait /3 /title1:%tname /title2:%bname
 /title3:%yname %theirs %base %mine %merged /a2

or with WinMerge (2.8 or later):

C:\Path-To\WinMerge.exe %merged

4.30.5.3. Rozšírené nastavenia rozdiely/zlúčenie

Obrázok 4.62. The Settings Dialog, Diff/Merge Advanced Dialog

In the advanced settings, you can define a different diff and merge program for every file extension. For
instance you could associate Photoshop as the “Diff” Program for .jpg files :-) You can also associate
the svn:mime-type property with a diff or merge program.

Sprievodca denného použitia

147

To associate using a file extension, you need to specify the extension. Use .bmp to describe Windows
bitmap files. To associate using the svn:mime-type property, specify the mime type, including a slash,
for example text/xml.

4.30.5.4. Unified Diff Viewer

A viewer program for unified-diff files (patch files). No parameters are required. The Default option is
to check for a file association for .diff files, and then for .txt files. If you don't have a viewer for
.diff files, you will most likely get NotePad.

The original Windows NotePad program does not behave well on files which do not have standard
CR-LF line-endings. Since most unified diff files have pure LF line-endings, they do not view well
in NotePad. However, you can download a free NotePad replacement Notepad2 [http://www.flos-
freeware.ch/notepad2.html] which not only displays the line-endings correctly, but also colour codes the
added and removed lines.

4.30.6. Saved Data Settings

Obrázok 4.63. The Settings Dialog, Saved Data Page

For your convenience, TortoiseSVN saves many of the settings you use, and remembers where you have
been lately. If you want to clear out that cache of data, you can do it here.

História URL
Whenever you checkout a working copy, merge changes or use the repository browser, TortoiseSVN
keeps a record of recently used URLs and offers them in a combo box. Sometimes that list gets
cluttered with outdated URLs so it is useful to flush it out periodically.

If you want to remove a single item from one of the combo boxes you can do that in-place. Just
click on the arrow to drop the combo box down, move the mouse over the item you want to remove
and type Shift+Del.

Správy denníka (vstupný dialóg)
TortoiseSVN stores recent commit log messages that you enter. These are stored per repository, so
if you access many repositories this list can grow quite large.

http://www.flos-freeware.ch/notepad2.html
http://www.flos-freeware.ch/notepad2.html
http://www.flos-freeware.ch/notepad2.html

Sprievodca denného použitia

148

Log messages (Show log dialog)
TortoiseSVN caches log messages fetched by the Show Log dialog to save time when you next show
the log. If someone else edits a log message and you already have that message cached, you will not
see the change until you clear the cache. Log message caching is enabled on the Log Cache tab.

Veľkosť a poloha dialogových okien
Many dialogs remember the size and screen position that you last used.

Auhentifikáčné data
When you authenticate with a Subversion server, the username and password are cached locally so
you don't have to keep entering them. You may want to clear this for security reasons, or because you
want to access the repository under a different username ... does John know you are using his PC?

If you want to clear authentication data for one particular server only, read Oddiel 4.1.5,
“Authentifikácia” for instructions on how to find the cached data.

Action log
TortoiseSVN keeps a log of everything written to its progress dialogs. This can be useful when, for
example, you want to check what happened in a recent update command.

The log file is limited in length and when it grows too big the oldest content is discarded. By default
4000 lines are kept, but you can customize that number.

From here you can view the log file content, and also clear it.

4.30.7. Log Caching

Obrázok 4.64. The Settings Dialog, Log Cache Page

This dialog allows you to configure the log caching feature of TortoiseSVN, which retains a local copy
of log messages and changed paths to avoid time-consuming downloads from the server. Using the log
cache can dramatically speed up the log dialog and the revision graph. Another useful feature is that the
log messages can still be accessed when offline.

Sprievodca denného použitia

149

Enable log caching
Enables log caching whenever log data is requested. If checked, data will be retrieved from the cache
when available, and any messages not in the cache will be retrieved from the server and added to
the cache.

If caching is disabled, data will always be retrieved directly from the server and not stored locally.

Allow ambiguous URLs
Occasionally you may have to connect to a server which uses the same URL for all repositories.
Older versions of svnbridge would do this. If you need to access such repositories you will have
to check this option. If you don't, leave it unchecked to improve performance.

Allow ambiguous UUIDs
Some hosting services give all their repositories the same UUID. You may even have done this
yourself by copying a repository folder to create a new one. For all sorts of reasons this is a bad idea
- a UUID should be unique. However, the log cache will still work in this situation if you check this
box. If you don't need it, leave it unchecked to improve performance.

Ak s úložiskom nemôže byť nadviazané spojenie
If you are working offline, or if the repository server is down, the log cache can still be used to
supply log messages already held in the cache. Of course the cache may not be up-to-date, so there
are options to allow you to select whether this feature should be used.

When log data is being taken from the cache without contacting the server, the dialog using those
message will show the offline state in its title bar.

Timeout before updating the HEAD revision
When you invoke the log dialog you will normally want to contact the server to check for any newer
log messages. If the timeout set here is non-zero then the server will only be contacted when the
timeout has elapsed since the last time contact. This can reduce server round-trips if you open the
log dialog frequently and the server is slow, but the data shown may not be completely up-to-date.
If you want to use this feature we suggest using a value of 300 (5 minutes) as a compromise.

Days of inactivity until small caches get removed
If you browse around a lot of repositories you will accumulate a lot of log caches. If you're not
actively using them, the cache will not grow very big, so TortoiseSVN purges them after a set time
by default. Use this item to control cache purging.

Maximum size of removed inactive caches
Larger caches are more expensive to reacquire, so TortoiseSVN only purges small caches. Fine tune
the threshold with this value.

Maximum number of tool failures before cache removal
Occasionally something goes wrong with the caching and causes a crash. If this happens the cache
is normally deleted automatically to prevent a recurrence of the problem. If you use the less stable
nightly build you may opt to keep the cache anyway.

4.30.7.1. Cached Repositories

On this page you can see a list of the repositories that are cached locally, and the space used for the cache.
If you select one of the repositories you can then use the buttons underneath.

Click on the Update to completely refresh the cache and fill in any holes. For a large repository this could
be very time consuming, but useful if you are about to go offline and want the best available cache.

Click on the Export button to export the entire cache as a set of CSV files. This could be useful if you
want to process the log data using an external program, although it is mainly useful to the developers.

Click on Delete to remove all cached data for the selected repositories. This does not disable caching for
the repository so the next time you request log data, a new cache will be created.

Sprievodca denného použitia

150

4.30.7.2. Log Cache Statistics

Obrázok 4.65. The Settings Dialog, Log Cache Statistics

Click on the Details button to see detailed statistics for a particular cache. Many of the fields shown here
are mainly of interest to the developers of TortoiseSVN, so they are not all described in detail.

RAM
The amount of memory required to service this cache.

Disk
The amount of disk space used for the cache. Data is compressed, so disk usage is generally fairly
modest.

Pripojenie
Shows whether the repository was available last time the cache was used.

Posledná aktualizácia
The last time the cache content was changed.

Last head update
The last time we requested the HEAD revision from the server.

Authori
The number of different authors with messages recorded in the cache.

Sprievodca denného použitia

151

Cesty
The number of paths listed, as you would see using svn log -v.

Skip ranges
The number of revision ranges which we have not fetched, simply because they haven't been
requested. This is a measure of the number of holes in the cache.

Max revision
The highest revision number stored in the cache.

Počet revízií
The number of revisions stored in the cache. This is another measure of cache completeness.

4.30.8. Klientské (pripnuté) skripty

Obrázok 4.66. The Settings Dialog, Hook Scripts Page

This dialog allows you to set up hook scripts which will be executed automatically when certain
Subversion actions are performed. As opposed to the hook scripts explained in Oddiel 3.3, “Serverovské
pripnuté (hook) skripty”, these scripts are executed locally on the client.

One application for such hooks might be to call a program like SubWCRev.exe to update version
numbers after a commit, and perhaps to trigger a rebuild.

For various security and implementation reasons, hook scripts are defined locally on a machine, rather
than as project properties. You define what happens, no matter what someone else commits to the
repository. Of course you can always choose to call a script which is itself under version control.

Sprievodca denného použitia

152

Obrázok 4.67. The Settings Dialog, Configure Hook Scripts

To add a new hook script, simply click Add and fill in the details.

Momentálne je prístupných šesť typov skriptov

Start-commit
Called before the commit dialog is shown. You might want to use this if the hook modifies a versioned
file and affects the list of files that need to be committed and/or commit message. However you
should note that because the hook is called at an early stage, the full list of objects selected for commit
is not available.

Pred odovzdaním
Called after the user clicks OK in the commit dialog, and before the actual commit begins. This hook
has a list of exactly what will be committed.

Po odovzdaní
Zavolaní po dokončení odovzdávania (či už bolo úspešné, alebo nie).

Start-update
Tento skript je volaný predtím ako je zobranený dialóg uaktualozovania na revíziu.

Pre-update
Called before the actual Subversion update begins.

Post-update
Called after the update finishes (whether successful or not).

A hook is defined for a particular working copy path. You only need to specify the top level path; if you
perform an operation in a sub-folder, TortoiseSVN will automatically search upwards for a matching path.

Next you must specify the command line to execute, starting with the path to the hook script or executable.
This could be a batch file, an executable file or any other file which has a valid windows file association,
eg. a perl script.

The command line includes several parameters which get filled in by TortoiseSVN. The parameters passed
depend upon which hook is called. Each hook has its own parameters which are passed in the following
order:

Start-commit
PATHMESSAGEFILECWD

Pred odovzdaním
PATHDEPTHMESSAGEFILECWD

Po odovzdaní
PATHDEPTHMESSAGEFILEREVISIONERRORCWD

Sprievodca denného použitia

153

Start-update
PATHCWD

Pre-update
PATHDEPTHREVISIONCWD

Post-update
PATHDEPTHREVISIONERRORCWD

The meaning of each of these parameters is described here:

PATH
Cesta k súboru, ktorý obsahuje všetky cesty, pre ktoré bol zahájený úkon. Každá cesta je na
samostatnom riadku dočasného súboru.

DEPTH
The depth with which the commit/update is done.

Možné hodnoty sú:

-2
svn_depth_unknown

-1
svn_depth_exclude

0
svn_depth_empty

1
svn_depth_files

2
svn_depth_immediates

3
svn_depth_infinity

MESSAGEFILE
Path to a file containing the log message for the commit. The file contains the text in UTF-8 encoding.
After successful execution of the start-commit hook, the log message is read back, giving the hook
a chance to modify it.

REVISION
The repository revision to which the update should be done or after a commit completes.

ERROR
Path to a file containing the error message. If there was no error, the file will be empty.

CWD
The current working directory with which the script is run. This is set to the common root directory
of all affected paths.

Note that although we have given these parameters names for convenience, you do not have to refer to
those names in the hook settings. All parameters listed for a particular hook are always passed, whether
you want them or not ;-)

If you want the Subversion operation to hold off until the hook has completed, check Wait for the script
to finish.

Sprievodca denného použitia

154

Normally you will want to hide ugly DOS boxes when the script runs, so Hide the script while running
is checked by default.

Sample client hook scripts can be found in the contrib folder in the TortoiseSVN repository [http://
tortoisesvn.googlecode.com/svn/trunk/contrib/hook-scripts]. (Oddiel 3, “TortoiseSVN je zdarma!”
explains how to access the repository).

4.30.8.1. Issue Tracker Integration

TortoiseSVN can use a COM plugin to query issue trackers when in the commit dialog. The use of
such plugins is described in Oddiel 4.28.2, “Getting Information from the Issue Tracker”. If your system
administrator has provided you with a plugin, which you have already installed and registered, this is the
place to specify how it integrates with your working copy.

Obrázok 4.68. The Settings Dialog, Issue Tracker Integration Page

Click on Add... to use the plugin with a particular working copy. Here you can specify the working copy
path, choose which plugin to use from a drop down list of all registered issue tracker plugins, and any
parameters to pass. The parameters will be specific to the plugin, but might include your user name on
the issue tracker so that the plugin can query for issues which are assigned to you.

If you want all users to use the same COM plugin for your project, you can specify the plugin also with
the properties bugtraq:provideruuid and bugtraq:providerparams.

bugtraq:provideruuid
This property specifies the COM UUID of the IBugtraqProvider, for example
{91974081-2DC7-4FB1-B3BE-0DE1C8D6CE4E}. (this example is the UUID of the Gurtle
bugtraq provider [http://code.google.com/p/gurtle/], which is a provider for the Google Code [http://
code.google.com/hosting/] issue tracker).

bugtraq:providerparams
This property specifies the parameters passed to the IBugtraqProvider.

Please check the documentation of your IBugtraqProvider plugin to find out what to specify in these two
properties.

http://tortoisesvn.googlecode.com/svn/trunk/contrib/hook-scripts
http://tortoisesvn.googlecode.com/svn/trunk/contrib/hook-scripts
http://tortoisesvn.googlecode.com/svn/trunk/contrib/hook-scripts
http://code.google.com/p/gurtle/
http://code.google.com/p/gurtle/
http://code.google.com/p/gurtle/
http://code.google.com/hosting/
http://code.google.com/hosting/
http://code.google.com/hosting/

Sprievodca denného použitia

155

4.30.9. Nastavenia TortoiseBlame

Obrázok 4.69. The Settings Dialog, TortoiseBlame Page

The settings used by TortoiseBlame are controlled from the main context menu, not directly with
TortoiseBlame itself.

Farby
TortoiseBlame môže použiť farbu pozadia na odlíšenie veku riadkov súboru. Môžete nastaviť farby
pre koncové body, ktoré reprezentujú najnovšiu a najstaršiu revíziu. TortoiseBlame použije lineárnu
interpoláciu medzi týmito farbami podľa revízie daného riadka..

Písmo
You can select the font used to display the text, and the point size to use. This applies both to the file
content, and to the author and revision information shown in the left pane.

Tabulátory
Určuje koľko medzier je použitých na mieste tabulátora.

4.30.10. Nastavenia registrov

A few infrequently used settings are available only by editing the registry directly. It goes without saying
that you should only edit registry values if you know what you are doing.

Konfigurácia
You can specify a different location for the Subversion configuration file using registry location
HKCU\Software\TortoiseSVN\ConfigDir. This will affect all TortoiseSVN operations.

Cache tray icon
To add a cache tray icon for the TSVNCache program, create a DWORD key with a value of 1 at HKCU
\Software\TortoiseSVN\CacheTrayIcon. This is really only useful for developers as it
allows you to terminate the program gracefully.

Sprievodca denného použitia

156

Debug
To show the command line parameters passed from the shell extension to TortoiseProc.exe create a
DWORD key with a value of 1 at HKCU\Software\TortoiseSVN\Debug.

Context Menu Icons
This can be useful if you use something other than the windows explorer or if you get problems with
the context menu displaying correctly. create a DWORD key with a value of 0 at HKCU\Software
\TortoiseSVN\ShowContextMenuIcons if you don't want TortoiseSVN to not show icons
for the shell context menu items. Set this value to 1 to show the icons again.

Block Overlay Status
If you don't want the explorer to update the status overlays while another TortoiseSVN command is
running (e.g. Update, Commit, ...) then create a DWORD key with a value of 1 at HKCU\Software
\TortoiseSVN\BlockStatus.

Update Check URL
HKCU\Software\TortoiseSVN\UpdateCheckURL contains the URL from which
TortoiseSVN tries to download a text file to find out if there are updates available. You can also set
this under HKLM instead of HKCU if you want, but HKCU overwrites the setting in HKLM. This might
be useful for company admins who don't want their users to update TortoiseSVN until they approve it.

Filenames without extensions in auto-completion list
The auto-completion list shown in the commit message editor displays the names of files listed for
commit. To also include these names with extensions removed, create a DWORD key with a value of
1 at HKCU\Software\TortoiseSVN\AutocompleteRemovesExtensions.

Explorer columns everywhere
The extra columns the TortoiseSVN adds to the details view in Windows Explorer are normally
only active in a working copy. If you want those to be accessible everywhere, not just in
working copies, create a DWORD key with a value of 1 at HKCU\Software\TortoiseSVN
\ColumnsEveryWhere.

Merge log separator
When you merge revisions from another branch, and merge tracking information is available, the
log messages from the revisions you merge will be collected to make up a commit log message. A
pre-defined string is used to separate the individual log messages of the merged revisions. If you
prefer, you can create a SZ key at HKCU\Software\TortoiseSVN\MergeLogSeparator
containing a separator string of your choice.

Always blame changes with TortoiseMerge
TortoiseSVN allows you to assign external diff viewer. Most such viewers, however, are not suited for
change blaming (Oddiel 4.23.2, “Obviniť rozdiely”), so you might wish to fall back to TortoiseMerge
in this case. To do so, create a DWORD key with a value of 1 at HKCU\Software\TortoiseSVN
\DiffBlamesWithTortoiseMerge.

Current revision highlighting for folders in log dialog
The log dialog highlights the current working copy revision when the log is shown for a file. To do
the same thing for a folder requires a working copy crawl, which is the default action, but it can be
a slow operation for large working copies. If you want to change the operation of this feature you
must create a DWORD registry key at HKCU\Software\TortoiseSVN\RecursiveLogRev.
A value of 0 disables the feature (no highlighting for folders), a value of 1 (default) will fetch the
status recursively (find the highest revision in the working copy tree), and a value of 2 will check the
revision of the selected folder itself, but will not check any child items.

Make checkout fail if an item of the same name exists
By default, if you checkout a working copy over an existing unversioned folder structure, as
you might do after import, then any existing which differ from the repository content will be
left unchanged and marked as modified. When you come to commit, it is your local copy which
will then be sent back to the repository. Some people would prefer the checkout to fail if the
existing content differs, so that if two people add the same file the second person's version does

Sprievodca denného použitia

157

not overwrite the original version by mistake. If you want to force checkouts to fail in this
instance you must create a DWORD registry key with value 0 at HKCU\Software\TortoiseSVN
\AllowUnversionedObstruction.

4.30.11. Pracovné adresáre Subversion

VS.NET 2003 when used with web projects can't handle the .svn folders that Subversion uses to store
its internal information. This is not a bug in Subversion. The bug is in VS.NET 2003 and the frontpage
extensions it uses.

Note that the bug is fixed in VS2005 and later versions.

As of Version 1.3.0 of Subversion and TortoiseSVN, you can set the environment variable
SVN_ASP_DOT_NET_HACK. If that variable is set, then Subversion will use _svn folders instead of
.svn folders. You must restart your shell for that environment variable to take effect. Normally that
means rebooting your PC. To make this easier, you can now do this from the general settings page using
a simple checkbox - refer to Oddiel 4.30.1, “Hlavné Nastavenia”.

For more information, and other ways to avoid this problem in the first place, check out the article about
this in our FAQ [http://tortoisesvn.net/aspdotnethack].

4.31. Final Step

Dotovanie!

Aj keď TortoiseSVN a TortoiseMerge sú zdarma, môžete pomôcť vývojárom poslaním záplaty, či
aktívne prispievať do vývoja. Takisto môžete pomôcť vývojárom povzbudenín pri nekonečných
hodinách, ktoré trávime pred našimi počítačmi.

Pri práci na TortoiseSVN radi počúvame hudbu. A keďže trávime veľa hodín na projekte
potrebujeme množtvo hudby. Preto sme zostavili zoznam prianí s našimi obľúbenými hudobnými
CD a DVD: http://tortoisesvn.tigris.org/donate.html. Prosím pozrite aj zoznam lúdí, ktorí prispeli
do projektu poslaním záplaty, alebo prekladov (napr. tento preklad má nasvedomí Oto BREZINA ;)
- poznámka prekladateľa).

http://tortoisesvn.net/aspdotnethack
http://tortoisesvn.net/aspdotnethack
http://tortoisesvn.tigris.org/donate.html

158

Kapitola 5. Program SubWCRev
SubWCRev je konzolový program pre Windows, ktorý môže byť použitý na čítanie stavu pracovnej
verzie Subversion. Tak isto môže nahradzovať klúčové slová v súbore šablóny. Je často súčastou procesu
prekladu ako prostriedok na vkladanie informácii o pracovnej kópií. Typicky môže byť použitá na
zahrnutie čísla pracovnej kópie do dialógu “O...”.

5.1. Parametre príkazového riadka SubWCRev
SubWCRev reads the Subversion status of all files in a working copy, excluding externals by default. It
records the highest commit revision number found, and the commit timestamp of that revision, It also
records whether there are local modifications in the working copy, or mixed update revisions. The revision
number, update revision range and modification status are displayed on stdout.

SubWCRev.exe is called from the command line or a script, and is controlled using the command line
parameters.

SubWCRev WorkingCopyPath [SrcVersionFile DstVersionFile] [-nmdfe]

WorkingCopyPath is the path to the working copy being checked. You can only use SubWCRev on
working copies, not directly on the repository. The path may be absolute or relative to the current working
directory.

If you want SubWCRev to perform keyword substitution, so that fields like repository revision and
URL are saved to a text file, you need to supply a template file SrcVersionFile and an output file
DstVersionFile which contains the substituted version of the template.

Je viacero prepínač, ktore ovplivňujú ako SubWCRev pracuje. Ak chcete použiť viac ako jeden, musia
byť zadané v jednej skupine napríklad: -nm, (a nie samostatne ako -n -m).

Prepnúť Popis

-n Ak je daný tento prepínač, SubWCRev sa ukonči s návratovou hodnotou
ERRORLEVEL 7, ak miestna pracovná kópia obsahuje zmeny. Toto môže byť
použité, aby sa vyhlo kompilovaniu neodovzdaných zmien.

-m Ak je daný tento prepínač, SubWCRev sa ukonči s návratovou hodnotou
ERRORLEVEL 8, ak miestna pracovná kópia obsahuje rôyne revízie. Toto môže byť
použité, aby sa vyhlo kompilovaniu čiastočne aktualizovanej pracovnej kópií.

-d Ak je daný tento prepínač, SubWCRev sa ukonči s návratovou hodnotou
ERRORLEVEL 9, ak cieľový súbor už existuje.

-f Ak je daný tento prepínač, SubWCRev zaráta i revíziu naposledy zmeneného
adresára. Predvolené spravanie je používať iba súbory na získanie čísiel revízií.

-e Ak je daný tento prepínač, SubWCRev bude preskúmavať aj svn:externals
pokiaľ patria rovnakému úložisku. Predvolené správanie je ignorovať externals.

-x Ak je daný tento prepínač, SubWCRev vráti čislo revizie v HEX sústave.

-X Ak je daný tento prepínač, SubWCRev vráti číslo revízie v HEX sústave s 0X pred
číslom.

Tabuľka 5.1. Zoznam parametrov príkazového riadka

5.2. Nahradzovanie kľúčových slov.
If a source and destination files are supplied, SubWCRev copies source to destination, performing
keyword substitution as follows:

Program SubWCRev

159

Kľúčové slovo Popis

$WCREV$ Nahradené najvyššiou revíziou v pracovnej kópií.

$WCDATE$ Replaced with the commit date/time of the highest commit revision.
By default, international format is used: yyyy-mm-dd hh:mm:ss.
Alternatively, you can specify a custom format which will be used with
strftime(), for example: $WCDATE=%a %b %d %I:%M:%S
%p$. For a list of available formatting characters, look at the online
reference [http://www.cppreference.com/stddate/strftime.html].

$WCNOW$ Nahradené aktualným systemovým dátumom/časom. Toto môže byť
použité na zobrazenie času prekladu. Formát času je popísaný v
$WCDATE$.

$WCRANGE$ Replaced with the update revision range in the working copy. If the
working copy is in a consistent state, this will be a single revision. If
the working copy contains mixed revisions, either due to being out of
date, or due to a deliberate update-to-revision, then the range will be
shown in the form 100:200

$WCMIXED$ $WCMIXED?TText:FText$ je nahradený s TText ak je mix
revízií, alebo s FText keď nie.

$WCMODS$ $WCMODS?TText:FText$ je nahradený s TText ak sú miestne
zmeny, alebo s FText ak nie sú.

$WCURL$ Nahradené URL úložska pracovnej kópie zadanej do SubWCRev.

$WCINSVN$ $WCINSVN?TText:FText$ is replaced with TText if the entry is
versioned, or FText if not.

$WCNEEDSLOCK$ $WCNEEDSLOCK?TText:FText$ is replaced with TText if the
entry has the svn:needs-lock property set, or FText if not.

$WCISLOCKED$ $WCISLOCKED?TText:FText$ is replaced with TText if the
entry is locked, or FText if not.

$WCLOCKDATE$ Nhradené dátumom zamknutia. Formát času je popísaný pre $WCDATE
$.

$WCLOCKOWNER$ Replaced with the name of the lock owner.

$WCLOCKCOMMENT$ Replaced with the comment of the lock.

Tabuľka 5.2. Zoznam parametrov príkazového riadka

Tip

Niektoré z týchto kľúčových slov sú skôr použité na súbory než na celú pracovnú
kópiu, takže je zmyslupné ich používať keď je SubWCRev volané pre súbor.
Toto sa týka $WCINSVN$, $WCNEEDSLOCK$, $WCISLOCKED$, $WCLOCKDATE$,
$WCLOCKOWNER$ a $WCLOCKCOMMENT$.

5.3. Príklad klúčových slov
Nasledovný príklad ukazuje ako sú klúčové slová nahradené vo výstupnom súbore.

// Test file for SubWCRev: testfile.tmpl

char *Revision = "$WCREV$";
char *Modified = "$WCMODS?Modified:Not modified$";
char *Date = "$WCDATE$";

http://www.cppreference.com/stddate/strftime.html
http://www.cppreference.com/stddate/strftime.html
http://www.cppreference.com/stddate/strftime.html

Program SubWCRev

160

char *Range = "$WCRANGE$";
char *Mixed = "$WCMIXED?Mixed revision WC:Not mixed$";
char *URL = "$WCURL$";

#if $WCMODS?1:0$
#error Source is modified
#endif

// End of file

Po spustení SubWCRev.exe cesta\ku\pracovnejkopii testfile.tmpl
testfile.txt, bude výstupný súbor testfile.txt vyzerať nasledovne:

// Test file for SubWCRev: testfile.txt

char *Revision = "3701";
char *Modified = "Modified";
char *Date = "2005/06/15 11:15:12";
char *Range = "3699:3701";
char *Mixed = "Mixed revision WC";
char *URL = "http://project.domain.org/svn/trunk/src";

#if 1
#error Source is modified
#endif

// End of file

Tip

A file like this will be included in the build so you would expect it to be versioned. Be sure
to version the template file, not the generated file, otherwise each time you regenerate the
version file you need to commit the change, which in turn means the version file needs to
be updated.

5.4. COM interface

If you need to access Subversion revision information from other programs, you can use the COM
interface of SubWCRev. The object to create is SubWCRev.object, and the following methods are
supported:

Metóda Popis

.GetWCInfo This method traverses the working copy gathering the revision
information. Naturally you must call this before you can access the
information using the remaining methods. The first parameter is the
path. The second parameter should be true if you want to include
folder revisions. Equivalent to the -f command line switch. The
third parameter should be true if you want to include svn:externals.
Equivalent to the -e command line switch.

.Revision The highest commit revision in the working copy. Equivalent to
$WCREV$

.Date The commit date/time of the highest commit revision. Equivalent to
$WCDATE$

Program SubWCRev

161

Metóda Popis

.Author The author of the highest commit revision, that is, the last person to
commit changes to the working copy.

.MinRev The minimum update revision, as shown in $WCRANGE$

.MaxRev The maximum update revision, as shown in $WCRANGE$

.HasModifications True - ak sú miestne zmeny

.Url Nahradené s URL cesty úložiska použitej v GetWCInfo. Ekvivalent
$WCURL$

.IsSvnItem True ak je objekt verziovaný.

.NeedsLocking True if the item has the svn:needs-lock property set.

.IsLocked True keď je objekt zamknutý.

.LockCreationDate String representing the date when the lock was created, or an empty
string if the item is not locked.

.LockOwner String representing the lock owner, or an empty string if the item is not
locked.

.LockComment The message entered when the lock was created.

Tabuľka 5.3. podporpvané automatizačné metódy COM

The following example shows how the interface might be used.

// testCOM.js - javascript file
// test script for the SubWCRev COM/Automation-object

filesystem = new ActiveXObject("Scripting.FileSystemObject");

revObject1 = new ActiveXObject("SubWCRev.object");
revObject2 = new ActiveXObject("SubWCRev.object");
revObject3 = new ActiveXObject("SubWCRev.object");
revObject4 = new ActiveXObject("SubWCRev.object");

revObject1.GetWCInfo(
 filesystem.GetAbsolutePathName("."), 1, 1);
revObject2.GetWCInfo(
 filesystem.GetAbsolutePathName(".."), 1, 1);
revObject3.GetWCInfo(
 filesystem.GetAbsolutePathName("SubWCRev.cpp"), 1, 1);
revObject4.GetWCInfo(
 filesystem.GetAbsolutePathName("..\\.."), 1, 1);

wcInfoString1 = "Revision = " + revObject1.Revision +
 "\nMin Revision = " + revObject1.MinRev +
 "\nMax Revision = " + revObject1.MaxRev +
 "\nDate = " + revObject1.Date +
 "\nURL = " + revObject1.Url + "\nAuthor = " +
 revObject1.Author + "\nHasMods = " +
 revObject1.HasModifications + "\nIsSvnItem = " +
 revObject1.IsSvnItem + "\nNeedsLocking = " +
 revObject1.NeedsLocking + "\nIsLocked = " +
 revObject1.IsLocked + "\nLockCreationDate = " +
 revObject1.LockCreationDate + "\nLockOwner = " +
 revObject1.LockOwner + "\nLockComment = " +

Program SubWCRev

162

 revObject1.LockComment;
wcInfoString2 = "Revision = " + revObject2.Revision +
 "\nMin Revision = " + revObject2.MinRev +
 "\nMax Revision = " + revObject2.MaxRev +
 "\nDate = " + revObject2.Date +
 "\nURL = " + revObject2.Url + "\nAuthor = " +
 revObject2.Author + "\nHasMods = " +
 revObject2.HasModifications + "\nIsSvnItem = " +
 revObject2.IsSvnItem + "\nNeedsLocking = " +
 revObject2.NeedsLocking + "\nIsLocked = " +
 revObject2.IsLocked + "\nLockCreationDate = " +
 revObject2.LockCreationDate + "\nLockOwner = " +
 revObject2.LockOwner + "\nLockComment = " +
 revObject2.LockComment;
wcInfoString3 = "Revision = " + revObject3.Revision +
 "\nMin Revision = " + revObject3.MinRev +
 "\nMax Revision = " + revObject3.MaxRev +
 "\nDate = " + revObject3.Date +
 "\nURL = " + revObject3.Url + "\nAuthor = " +
 revObject3.Author + "\nHasMods = " +
 revObject3.HasModifications + "\nIsSvnItem = " +
 revObject3.IsSvnItem + "\nNeedsLocking = " +
 revObject3.NeedsLocking + "\nIsLocked = " +
 revObject3.IsLocked + "\nLockCreationDate = " +
 revObject3.LockCreationDate + "\nLockOwner = " +
 revObject3.LockOwner + "\nLockComment = " +
 revObject3.LockComment;
wcInfoString4 = "Revision = " + revObject4.Revision +
 "\nMin Revision = " + revObject4.MinRev +
 "\nMax Revision = " + revObject4.MaxRev +
 "\nDate = " + revObject4.Date +
 "\nURL = " + revObject4.Url + "\nAuthor = " +
 revObject4.Author + "\nHasMods = " +
 revObject4.HasModifications + "\nIsSvnItem = " +
 revObject4.IsSvnItem + "\nNeedsLocking = " +
 revObject4.NeedsLocking + "\nIsLocked = " +
 revObject4.IsLocked + "\nLockCreationDate = " +
 revObject4.LockCreationDate + "\nLockOwner = " +
 revObject4.LockOwner + "\nLockComment = " +
 revObject4.LockComment;

WScript.Echo(wcInfoString1);
WScript.Echo(wcInfoString2);
WScript.Echo(wcInfoString3);
WScript.Echo(wcInfoString4);

163

Kapitola 6. IBugtraqProvider interface
To get a tighter integration with issue trackers than by simply using the bugtraq: properties,
TortoiseSVN can make use of COM plugins. With such plugins it is possible to fetch information directly
from the issue tracker, interact with the user and provide information back to TortoiseSVN about open
issues, verify log messages entered by the user and even run actions after a successful commit to e.g,
close an issue.

We can't provide information and tutorials on how you have to implement a COM object in your preferred
programming language, but we have example plugins in C++/ATL and C# in our repository in the
contrib/issue-tracker-plugins folder. In that folder you can also find the required include
files you need to build your plugin. (Oddiel 3, “TortoiseSVN je zdarma!” explains how to access the
repository).

6.1. The IBugtraqProvider interface
TortoiseSVN 1.5 can use plugins which implement the IBugtraqProvider interface. The interface provides
a few methods which plugins can use to interact with the issue tracker.

HRESULT ValidateParameters (
 // Parent window for any UI that needs to be
 // displayed during validation.
 [in] HWND hParentWnd,

 // The parameter string that needs to be validated.
 [in] BSTR parameters,

 // Is the string valid?
 [out, retval] VARIANT_BOOL *valid
);

This method is called from the settings dialog where the user can add and configure the plugin. The
parameters string can be used by a plugin to get additional required information, e.g., the URL to the
issue tracker, login information, etc. The plugin should verify the parameters string and show an error
dialog if the string is not valid. The hParentWnd parameter should be used for any dialog the plugin
shows as the parent window. The plugin must return TRUE if the validation of the parameters string
is successful. If the plugin returns FALSE, the settings dialog won't allow the user to add the plugin to
a working copy path.

HRESULT GetLinkText (
 // Parent window for any (error) UI that needs to be displayed.
 [in] HWND hParentWnd,

 // The parameter string, just in case you need to talk to your
 // web service (e.g.) to find out what the correct text is.
 [in] BSTR parameters,

 // What text do you want to display?
 // Use the current thread locale.
 [out, retval] BSTR *linkText
);

The plugin can provide a string here which is used in the TortoiseSVN commit dialog for the button
which invokes the plugin, e.g., "Choose issue" or "Select ticket". Make sure the string is not too long,

IBugtraqProvider interface

164

otherwise it might not fit into the button. If the method returns an error (e.g., E_NOTIMPL), a default
text is used for the button.

HRESULT GetCommitMessage (
 // Parent window for your provider's UI.
 [in] HWND hParentWnd,

 // Parameters for your provider.
 [in] BSTR parameters,
 [in] BSTR commonRoot,
 [in] SAFEARRAY(BSTR) pathList,

 // The text already present in the commit message.
 // Your provider should include this text in the new message,
 // where appropriate.
 [in] BSTR originalMessage,

 // The new text for the commit message.
 // This replaces the original message.
 [out, retval] BSTR *newMessage
);

This is the main method of the plugin. This method is called from the TortoiseSVN commit dialog when
the user clicks on the plugin button. The parameters string is the string the user has to enter in the
settings dialog when he configures the plugin. Usually a plugin would use this to find the URL of the issue
tracker and/or login information or more. The commonRoot string contains the parent path of all items
selected to bring up the commit dialog. Note that this is not the root path of all items which the user has
selected in the commit dialog. The pathList parameter contains an array of paths (as strings) which
the user has selected for the commit. The originalMessage parameter contains the text entered in
the log message box in the commit dialog. If the user has not yet entered any text, this string will be
empty. The newMessage return string is copied into the log message edit box in the commit dialog,
replacing whatever is already there. If a plugin does not modify the originalMessage string, it must
return the same string again here, otherwise any text the user has entered will be lost.

6.2. The IBugtraqProvider2 interface
In TortoiseSVN 1.6 a new interface was added which provides more functionality for plugins. This
IBugtraqProvider2 interface inherits from IBugtraqProvider.

HRESULT GetCommitMessage2 (
 // Parent window for your provider's UI.
 [in] HWND hParentWnd,

 // Parameters for your provider.
 [in] BSTR parameters,
 // The common URL of the commit
 [in] BSTR commonURL,
 [in] BSTR commonRoot,
 [in] SAFEARRAY(BSTR) pathList,

 // The text already present in the commit message.
 // Your provider should include this text in the new message,
 // where appropriate.
 [in] BSTR originalMessage,

 // You can assign custom revision properties to a commit
 // by setting the next two params.

IBugtraqProvider interface

165

 // note: Both safearrays must be of the same length.
 // For every property name there must be a property value!

 // The content of the bugID field (if shown)
 [in] BSTR bugID,

 // Modified content of the bugID field
 [out] BSTR * bugIDOut,

 // The list of revision property names.
 [out] SAFEARRAY(BSTR) * revPropNames,

 // The list of revision property values.
 [out] SAFEARRAY(BSTR) * revPropValues,

 // The new text for the commit message.
 // This replaces the original message
 [out, retval] BSTR * newMessage
);

This method is called from the TortoiseSVN commit dialog when the user clicks on the plugin button.
This method is called instead of GetCommitMessage(). Please refer to the documentation for
GetCommitMessage for the parameters that are also used there. The parameter commonURL is the
parent URL of all items selected to bring up the commit dialog. This is basically the URL of the
commonRoot path. The parameter bugID contains the content of the bug-ID field (if it is shown,
configured with the property bugtraq:message). The return parameter bugIDOut is used to fill the
bug-ID field when the method returns. The revPropNames and revPropValues return parameters
can contain name/value pairs for revision properties that the commit should set. A plugin must make
sure that both arrays have the same size on return! Each property name in revPropNames must also
have a corresponding value in revPropValues. If no revision properties are to be set, the plugin must
return empty arrays.

HRESULT CheckCommit (
 [in] HWND hParentWnd,
 [in] BSTR parameters,
 [in] BSTR commonURL,
 [in] BSTR commonRoot,
 [in] SAFEARRAY(BSTR) pathList,
 [in] BSTR commitMessage,
 [out, retval] BSTR * errorMessage
);

This method is called right before the commit dialog is closed and the commit begins. A plugin can use this
method to validate the selected files/folders for the commit and/or the commit message entered by the user.
The parameters are the same as for GetCommitMessage2(), with the difference that commonURL is
now the common URL of all checked items, and commonRoot the root path of all checked items. The
return parameter errorMessage must either contain an error message which TortoiseSVN shows to
the user or be empty for the commit to start. If an error message is returned, TortoiseSVN shows the error
string in a dialog and keeps the commit dialog open so the user can correct whatever is wrong. A plugin
should therefore return an error string which informs the user what is wrong and how to correct it.

HRESULT OnCommitFinished (
 // Parent window for any (error) UI that needs to be displayed.
 [in] HWND hParentWnd,

 // The common root of all paths that got committed.
 [in] BSTR commonRoot,

IBugtraqProvider interface

166

 // All the paths that got committed.
 [in] SAFEARRAY(BSTR) pathList,

 // The text already present in the commit message.
 [in] BSTR logMessage,

 // The revision of the commit.
 [in] ULONG revision,

 // An error to show to the user if this function
 // returns something else than S_OK
 [out, retval] BSTR * error
);

This method is called after a successful commit. A plugin can use this method to e.g., close the
selected issue or add information about the commit to the issue. The parameters are the same as for
GetCommitMessage2.

HRESULT HasOptions(
 // Whether the provider provides options
 [out, retval] VARIANT_BOOL *ret
);

This method is called from the settings dialog where the user can configure the plugins. If a plugin
provides its own configuration dialog with ShowOptionsDialog, it must return TRUE here,
otherwise it must return FALSE.

HRESULT ShowOptionsDialog(
 // Parent window for the options dialog
 [in] HWND hParentWnd,

 // Parameters for your provider.
 [in] BSTR parameters,

 // The parameters string
 [out, retval] BSTR * newparameters
);

This method is called from the settings dialog when the user clicks on the "Options" button that is shown
if HasOptions returns TRUE. A plugin can show an options dialog to make it easier for the user to
configure the plugin. The parameters string contains the plugin parameters string that is already set/
entered. The newparameters return parameter must contain the parameters string which the plugin
constructed from the info it gathered in its options dialog. That paramameters string is passed to all
other IBugtraqProvider and IBugtraqProvider2 methods.

167

Dodatok A. Frequently Asked
Questions (FAQ)

Because TortoiseSVN is being developed all the time it is sometimes hard to keep the documentation
completely up to date. We maintain an online FAQ [http://tortoisesvn.tigris.org/faq.html] which
contains a selection of the questions we are asked the most on the TortoiseSVN mailing lists
<dev@tortoisesvn.tigris.org> and <users@tortoisesvn.tigris.org>.

We also maintain a project Issue Tracker [http://issues.tortoisesvn.net] which tells you about some of the
things we have on our To-Do list, and bugs which have already been fixed. If you think you have found
a bug, or want to request a new feature, check here first to see if someone else got there before you.

If you have a question which is not answered anywhere else, the best place to ask it is on one of the
mailing lists. <users@tortoisesvn.tigris.org> is the one to use if you have questions about
using TortoiseSVN. If you want to help out with the development of TortoiseSVN, then you should take
part in discussions on <dev@tortoisesvn.tigris.org>.

http://tortoisesvn.tigris.org/faq.html
http://tortoisesvn.tigris.org/faq.html
http://issues.tortoisesvn.net
http://issues.tortoisesvn.net

168

Dodatok B. Ako spravím ...
Táto príloha obsahuje riešenia na problémy a otázky, ktoré môžete mať pri používaní TortoiseSVN.

B.1. Presunúť/kopírovať viacero súborov naraz.

Presúvanie/Kopírovanie jedného suboru môže byť uskutočnené pomocou TortoiseSVN →
Premenovať.... Ale keď chcete presunúť/premenovať veľa súborov, je táto cesta pomalá a príliš pracná

The recommended way is by right-dragging the files to the new location. Simply right-click on the files
you want to move/copy without releasing the mouse button. Then drag the files to the new location and
release the mouse button. A context menu will appear where you can either choose Context Menu →
SVN Copy versioned files here. or Context Menu → SVN Move versioned files here.

B.2. Force users to enter a log message

There are two ways to prevent users from committing with an empty log message. One is specific to
TortoiseSVN, the other works for all Subversion clients, but requires access to the server directly.

B.2.1. Hookskripty na servery

If you have direct access to the repository server, you can install a pre-commit hook script which rejects
all commits with an empty or too short log message.

In the repository folder on the server, there's a sub-folder hooks which contains some example hook
scripts you can use. The file pre-commit.tmpl contains a sample script which will reject commits
if no log message is supplied, or the message is too short. The file also contains comments on how to
install/use this script. Just follow the instructions in that file.

This method is the recommended way if your users also use other Subversion clients than TortoiseSVN.
The drawback is that the commit is rejected by the server and therefore users will get an error message.
The client can't know before the commit that it will be rejected. If you want to make TortoiseSVN have
the OK button disabled until the log message is long enough then please use the method described below.

B.2.2. Vlastnosť projektu

TortoiseSVN uses properties to control some of its features. One of those properties is the
tsvn:logminsize property.

Ako spravím ...

169

If you set that property on a folder, then TortoiseSVN will disable the OK button in all commit dialogs
until the user has entered a log message with at least the length specified in the property.

For detailed information on those project properties, please refer to Oddiel 4.17, “Nastavenia Projektu”

B.3. Update selected files from the repository

Normally you update your working copy using TortoiseSVN → Update. But if you only want to pick
up some new files that a colleague has added without merging in any changes to other files at the same
time, you need a different approach.

Use TortoiseSVN → Check for Modifications. and click on Check repository to see what has changed
in the repository. Select the files you want to update locally, then use the context menu to update just
those files.

B.4. Roll back (Undo) revisions in the repository

B.4.1. Use the revision log dialog

The easiest way to revert the changes from a single revision, or from a range of revisions, is to use the
revision log dialog. This is also the method to use of you want to discard recent changes and make an
earlier revision the new HEAD.

1. Select the file or folder in which you need to revert the changes. If you want to revert all changes,
this should be the top level folder.

2. Select TortoiseSVN → Show Log to display a list of revisions. You may need to use Show All or
Next 100 to show the revision(s) you are interested in.

3. Select the revision you wish to revert. If you want to undo a range of revisions, select the first one
and hold the Shift key while selecting the last one. Note that for multiple revisions, the range must be
unbroken with no gaps. Right click on the selected revision(s), then select Context Menu → Revert
changes from this revision.

4. Or if you want to make an earlier revision the new HEAD revision, right click on the selected revision,
then select Context Menu → Revert to this revision. This will discard all changes after the selected
revision.

You have reverted the changes within your working copy. Check the results, then commit the changes.

B.4.2. Použitie dialógu spájania

To undo a larger range of revisions, you can use the Merge dialog. The previous method uses merging
behind the scenes; this method uses it explicitly.

1. In your working copy select TortoiseSVN → Merge.

2. In the From: field enter the full folder URL of the branch or tag containing the changes you want to
revert in your working copy. This should come up as the default URL.

3. In the From Revision field enter the revision number that you are currently at. If you are sure there
is no-one else making changes, you can use the HEAD revision.

4. make sure the Use "From:" URL checkbox is checked.

5. In the To Revision field enter the revision number that you want to revert to, namely the one before
the first revision to be reverted.

Ako spravím ...

170

6. Click OK to complete the merge.

You have reverted the changes within your working copy. Check the results, then commit the changes.

B.4.3. Použitie svndumpfilter

Since TortoiseSVN never loses data, your “rolled back” revisions still exist as intermediate revisions in
the repository. Only the HEAD revision was changed to a previous state. If you want to make revisions
disappear completely from your repository, erasing all trace that they ever existed, you have to use more
extreme measures. Unless there is a really good reason to do this, it is not recommended. One possible
reason would be that someone committed a confidential document to a public repository.

The only way to remove data from the repository is to use the Subversion command line tool svnadmin.
You can find a description of how this works in the Repository Maintenance [http://svnbook.red-
bean.com/en/1.5/svn.reposadmin.maint.html].

B.5. Compare two revisions of a file or folder

If you want to compare two revisions in an item's history, for example revisions 100 and 200 of the same
file, just use TortoiseSVN → Show Log to list the revision history for that file. Pick the two revisions
you want to compare then use Context Menu → Compare Revisions.

If you want to compare the same item in two different trees, for example the trunk and a branch, you can
use the repository browser to open up both trees, select the file in both places, then use Context Menu
→ Compare Revisions.

If you want to compare two trees to see what has changed, for example the trunk and a tagged release,
you can use TortoiseSVN → Revision Graph Select the two nodes to compare, then use Context
Menu → Compare HEAD Revisions. This will show a list of changed files, and you can then select
individual files to view the changes in detail. You can also export a tree structure containing all the
changed files, or simply a list of all changed files. Read Oddiel 4.10.3, “Porovavanie adresárov” for more
information. Alternatively use Context Menu → Unified Diff of HEAD Revisions to see a summary
of all differences, with minimal context.

B.6. Zahrnutie spoločného kódu

Niekedy budete chcieť pridať iný projekt do vašej pracovnej kópie, možno kó knižnice. Nebude chcieť
zdvojiť kódu pretože stratíte spojenie s pôvodným (a spravovaným) kódom. Alebo budete man viacero
projektov, ktoré navzájom budú zdielať zdrojový kód. Sú najmanej tri spôsoby ako to dosiahnuť.

B.6.1. Použitie svn:externals

Set the svn:externals property for a folder in your project. This property consists of one or more
lines; each line has the name of a sub-folder which you want to use as the checkout folder for common
code, and the repository URL that you want to be checked out there. For full details refer to Oddiel 4.18,
“externé objekty”.

Commit the new folder. Now when you update, Subversion will pull a copy of that project from its
repository into your working copy. The sub-folders will be created automatically if required. Each time
you update your main working copy, you will also receive the latest version of all external projects.

If the external project is in the same repository, any changes you make there there will be included in the
commit list when you commit your main project.

If the external project is in a different repository, any changes you make to the external project will be
notified when you commit the main project, but you have to commit those external changes separately.

http://svnbook.red-bean.com/en/1.5/svn.reposadmin.maint.html
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.maint.html
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.maint.html

Ako spravím ...

171

Of the three methods described, this is the only one which needs no setup on the client side. Once externals
are specified in the folder properties, all clients will get populated folders when they update.

B.6.2. Použitie vnorenej pracovnej kópie

Vytvorte nový adresár vo vašom projekte, ktorý má obsahovať spoločný zdrojový kód, ale nepridajte to
do Subversion.

Vyberte TortoiseSVN → Získať pre novovytvorený adresár a získajte do neho spoločný zdrojový kód.
Máte oddelenú pracovnú kópiu vnorenú v hlavnej kópií.

Dve pracovné kópie sú nezávislé. Keď odovzdáte hlavnú, zmeny z vnorenej pracovnej kópie
sú ignorované. Podobne keď aktualizujete hlavnú pracovnú kópiu, vnorená pracovná kópa nie je
aktualizovaná.

B.6.3. Použitie relativnej cesty

Keď požívate rovaké spoločné kódy pre mnoho projektov, a nechcete držať ich mnohonásobné pracovné
kópie pre každý projekt, ktorý ich používa, stači ak ich získate do oddeleného miesta, ktoré je príbuzné
všetkým ostatným projektom, ktoré ich používajú. Napríklad:

C:\Projects\Proj1
C:\Projects\Proj2
C:\Projects\Proj3
C:\Projects\Common

a odkazujte sa na spoločné kódy použitím relatívnych ciest: ..\..\Common\DSPcore.

If your projects are scattered in unrelated locations you can use a variant of this, which is to put the
common code in one location and use drive letter substitution to map that location to something you can
hard code in your projects, eg. Checkout the common code to D:\Documents\Framework or C:
\Documents and Settings\{login}\My Documents\framework then use

SUBST X: "D:\Documents\framework"

to create the drive mapping used in your source code. Your code can then use absolute locations.

#include "X:\superio\superio.h"

This method will only work in an all-PC environment, and you will need to document the required drive
mappings so your team know where these mysterious files are. This method is strictly for use in closed
development environments, and not recommended for general use.

B.7. Create a shortcut to a repository

If you frequently need to open the repository browser at a particular location, you can create a desktop
shortcut using the automation interface to TortoiseProc. Just create a new shortcut and set the target to:

TortoiseProc.exe /command:repobrowser /path:"url/to/repository"

Of course you need to include the real repository URL.

B.8. Ignore files which are already versioned

Ako spravím ...

172

If you accidentally added some files which should have been ignored, how do you get them out of version
control without losing them? Maybe you have your own IDE configuration file which is not part of the
project, but which took you a long time to set up just the way you like it.

If you have not yet committed the add, then all you have to do is use TortoiseSVN → Revert... to undo
the add. You should then add the file(s) to the ignore list so they don't get added again later by mistake.

If the files are already in the repository, you have to do a little more work.

1. Hold the Shift key to get the extended context menu and use TortoiseSVN → Delete (keep local)
to mark the file/folder for deletion from the repository without losing the local copy.

2. TortoiseSVN → Odovzdať rodičovský adresár.

3. Add the file/folder to the ignore list so you don't get into the same trouble again.

B.9. Unversion a working copy
If you have a working copy which you want to convert back to a plain folder tree without the .svn
directories, you can simply export it to itself. Read Oddiel 4.26.1, “Removing a working copy from
version control” to find out how.

B.10. Odtránenie pracovnej kópie
If you have a working copy which you no longer need, how do you get rid of it cleanly? Easy - just delete
it in Windows Explorer! Working copies are private local entities, and they are self-contained.

173

Dodatok C. Useful Tips For
Administrators

Táto príloha obsahuje riešenia problémov a otázok, ktoré môžete mať keď ste zodpovedný za rozširovanie
TortoiseSVN na viacero uživaľských staníc.

C.1. Rozširovanie TortoiseSVN pomocou skupinovaj politiky

The TortoiseSVN installer comes as an MSI file, which means you should have no problems adding that
MSI file to the group policies of your domain controller.

A good walk-through on how to do that can be found in the knowledge base article 314934 from
Microsoft: http://support.microsoft.com/?kbid=314934.

TortoiseSVN verzia 1.3.0 a novšie musia byť nainštalované pod Computer Configuration a nie User
Configuration. Toto je preto, že tieto verzie potrebujú nové CRT a MFC dll súbory, ktoré môžu byť
rozširované iba ako per computer a nie per user. Ak naozaj musíte nainstalovať TortoiseSVN na
uživaľskom základe, potom musíte najprv nainštalovať balíky Microsoft MFC a CRT verzie 8 na každý
počítač, kde chcete mať takto nainštalované TortoiseSVN.

C.2. Presmerovanie aktualizačnej kontroli

TortoiseSVN kontroluje existenciu nových verzie kazdých niekoľko dní. Ak je prístupná novšia verzia,
zobrazí sa dialog a informuje o tom uživateľa.

Obrázok C.1. Dialóg aktualizácie

If you're responsible for a lot of users in your domain, you might want your users to use only versions you
have approved and not have them install always the latest version. You probably don't want that upgrade
dialog to show up so your users don't go and upgrade immediately.

Versions 1.4.0 and later of TortoiseSVN allow you to redirect that upgrade check to your intranet server.
You can set the registry key HKCU\Software\TortoiseSVN\UpdateCheckURL (string value) to
an URL pointing to a text file in your intranet. That text file must have the following format:

1.4.1.6000
A new version of TortoiseSVN is available for you to download!
http://192.168.2.1/downloads/TortoiseSVN-1.4.1.6000-svn-1.4.0.msi

http://support.microsoft.com/?kbid=314934

Useful Tips For Administrators

174

The first line in that file is the version string. You must make sure that it matches the exact version string
of the TortoiseSVN installation package. The second line is a custom text, shown in the upgrade dialog.
You can write there whatever you want. Just note that the space in the upgrade dialog is limited. Too
long messages will get truncated! The third line is the URL to the new installation package. This URL is
opened when the user clicks on the custom message label in the upgrade dialog. You can also just point
the user to a web page instead of the MSI file directly. The URL is opened with the default web browser,
so if you specify a web page, that page is opened and shown to the user. If you specify the MSI package,
the browser will ask the user to save the MSI file locally.

C.3. Setting the SVN_ASP_DOT_NET_HACK environment variable

As of version 1.4.0 and later, the TortoiseSVN installer doesn't provide the user with the option to set
the SVN_ASP_DOT_NET_HACK environment variable anymore, since that caused many problems and
confusions with users which always install everything no matter if they know what it is for.

But that option is only hidden for the user. You still can force the TortoiseSVN installer to set that
environment variable by setting the ASPDOTNETHACK property to TRUE. For example, you can start
the installer like this:

msiexec /i TortoiseSVN-1.4.0.msi ASPDOTNETHACK=TRUE

C.4. Zakázať položky kontextového menu

As of version 1.5.0 and later, TortoiseSVN allows you to disable (actually, hide) context menu entries.
Since this is a feature which should not be used lightly but only if there is a compelling reason, there is no
GUI for this and it has to be done directly in the registry. This can be used to disable certain commands
for users who should not use them. But please note that only the context menu entries in the explorer are
hidden, and the commands are still available through other means, e.g. the command line or even other
dialogs in TortoiseSVN itself!

The registry keys which hold the information on which context menus to show
are HKEY_CURRENT_USER\Software\TortoiseSVN\ContextMenuEntriesMaskLow and
HKEY_CURRENT_USER\Software\TortoiseSVN\ContextMenuEntriesMaskHigh.

Each of these registry entries is a DWORD value, with each bit corresponding to a specific menu entry. A
set bit means the corresponding menu entry is deactivated.

Hodnota Menu entry

0x0000000000000001 Získať

0x0000000000000002 Aktualizovať

0x0000000000000004 Odovzdať

0x0000000000000008 Pridať

0x0000000000000010 Vrátiť

0x0000000000000020 Vyčistiť

0x0000000000000040 Vyriešiť

0x0000000000000080 Prepnúť

0x0000000000000100 Importovať

0x0000000000000200 Exportovať

0x0000000000000400 Vytvoriť úložisko tu

0x0000000000000800 Vetva/značka

Useful Tips For Administrators

175

Hodnota Menu entry

0x0000000000001000 Zlúčiť

0x0000000000002000 Vymazať

0x0000000000004000 Premenovať

0x0000000000008000 Update to revision

0x0000000000010000 Porovnať

0x0000000000020000 Zobraz denník

0x0000000000040000 Upraviť konflikty

0x0000000000080000 Premiestniť

0x0000000000100000 Check for modifications

0x0000000000200000 Ignorovať

0x0000000000400000 Prehliadač úložiska

0x0000000000800000 Obviniť

0x0000000001000000 Vytvoriť záplatu

0x0000000002000000 Použiť záplatu

0x0000000004000000 Graf revízií

0x0000000008000000 Zamknúť

0x0000000010000000 Odstrániť zámok

0x0000000020000000 Vlastnosti

0x0000000040000000 Diff with URL

0x0000000080000000 Delete unversioned items

0x2000000000000000 Nastavenie

0x4000000000000000 Help

0x8000000000000000 About

Tabuľka C.1. Menu entries and their values

Example: to disable the “Relocate” the “Delete unversioned items” and the “Settings” menu entries, add
the values assigned to the entries like this:

 0x0000000000080000
+ 0x0000000080000000
+ 0x2000000000000000
= 0x2000000080080000

The lower DWORD value (0x80080000) must then be stored in HKEY_CURRENT_USER\Software
\TortoiseSVN\ContextMenuEntriesMaskLow, the higher DWORD value (0x20000000) in
HKEY_CURRENT_USER\Software\TortoiseSVN\ContextMenuEntriesMaskHigh.

To enable the menu entries again, simply delete the two registry keys.

176

Dodatok D. Automatizácia
TortoiseSVN

Kedže všetky príkazy TortoiseSVN sú ovládané parametrami príkazového riadka, môžete automatizovať
skriptami a spúštať príkazy a dialógy z iných programov (napr: z vašeho obľúbeného textového editora).

Dôležité

Remember that TortoiseSVN is a GUI client, and this automation guide shows you how to
make the TortoiseSVN dialogs appear to collect user input. If you want to write a script
which requires no input, you should use the official Subversion command line client instead.

D.1. Príkazy TortoiseSVN

The TortoiseSVN GUI program is called TortoiseProc.exe. All commands are specified with the
parameter /command:abcd where abcd is the required command name. Most of these commands
need at least one path argument, which is given with /path:"some\path". In the following table the
command refers to the /command:abcd parameter and the path refers to the /path:"some\path"
parameter.

Kedže niektoré príkazy môžu pracovať so zoznamov cieľových ćiest (napr.: odovzdávanie viacerých
určených súborov) parameter /path môže obsahovať viaceré cesty oddelené znakom *.

TortoiseSVN uses temporary files to pass multiple arguments between the shell extension and the main
program. From TortoiseSVN 1.5.0 on and later, /notempfile parameter is obsolete and there is no
need to add it anymore.

The progress dialog which is used for commits, updates and many more commands usually stays open
after the command has finished until the user presses the OK button. This can be changed by checking
the corresponding option in the settings dialog. But using that setting will close the progress dialog, no
matter if you start the command from your batch file or from the TortoiseSVN context menu.

To specify a different location of the configuration file, use the parameter /configdir:"path\to
\config\directory". This will override the default path, including any registry setting.

To close the progress dialog at the end of a command automatically without using the permanent setting
you can pass the /closeonend parameter.

• /closeonend:0 nezatvárať dialógové okno automaticky

• /closeonend:1 zavrieť dialógové okno automaticky ak nenastali chyby

• /closeonend:2 zavrieť dialógové okno automaticky ak nenastali chyby, alebo konflikty

• /closeonend:3 zavrieť dialógové okno automaticky ak nenastali chyby, konflikty, alebo zlúčenia

• /closeonend:4 zavrieť dialógové okno automaticky ak nenastali chyby, konflikty, alebo zlúčenia
pre miestne operácie

The table below lists all the commands which can be accessed using the TortoiseProc.exe command line.
As described above, these should be used in the form /command:abcd. In the table, the /command
prefix is omitted to save space.

Príkaz Popis

:about Shows the about dialog. This is also shown if no command is given.

Automatizácia TortoiseSVN

177

Príkaz Popis

:log Opens the log dialog. The /path specifies the file or folder for which the log
should be shown. Three additional options can be set: /startrev:xxx,
/endrev:xxx and /strict

:checkout Otvorí dialog pre získanie. Parameter /path určuje cieľový adresár a /url
určuje URL, z ktorej prebehne získavanie.

:import Opens the import dialog. The /path specifies the directory with the data
to import.

:update Updates the working copy in /path to HEAD. If the option /rev is given
then a dialog is shown to ask the user to which revision the update should go.
To avoid the dialog specify a revision number /rev:1234. Other options
are /nonrecursive and /ignoreexternals.

:commit Opens the commit dialog. The /path specifies the target directory or the
list of files to commit. You can also specify the /logmsg switch to pass a
predefined log message to the commit dialog. Or, if you don't want to pass
the log message on the command line, use /logmsgfile:path, where
cesta points to a file containing the log message. To pre-fill the bug ID box
(in case you've set up integration with bug trackers properly), you can use
the /bugid:"the bug id here" to do that.

:add Pridá súbory v /path do správy verzií.

:revert Vráti miestne zmeny pracovnej kópie. Parameter /path hovorí, ktoré
objekty sa majú vrátiť do pôvodného stavu.

:cleanup Vyčistí, prerušené, alebo zrušené operácie a odomkne pracovnú kópiu v /
path.

:resolve Marks a conflicted file specified in /path as resolved. If /noquestion
is given, then resolving is done without asking the user first if it really should
be done.

:repocreate Vytvorí uložisko na /path

:switch Opens the switch dialog. The /path specifies the target directory.

:export Exports the working copy in /path to another directory. If the /path
points to an unversioned directory, a dialog will ask for an URL to export
to the directory in /path.

:merge Opens the merge dialog. The /path specifies the target directory.
For merging a revision range, the following options are available: /
fromurl:URL, /revrange:string. For merging two repository trees,
the following options are available: /fromurl:URL, /tourl:URL, /
fromrev:xxx and /torev:xxx. These pre-fill the relevant fields in the
merge dialog.

:mergeall Opens the merge all dialog. The /path specifies the target directory.

:copy Brings up the branch/tag dialog. The /path is the working copy to branch/
tag from. And the /url is the target URL. You can also specify the /
logmsg switch to pass a predefined log message to the branch/tag dialog.
Or, if you don't want to pass the log message on the command line, use
/logmsgfile:path, where cesta points to a file containing the log
message.

:settings Otvorí dialógové okno nastavenia.

:remove Odstráni súbor(y) v /path zpod správy verzíí.

:rename Renames the file in /path. The new name for the file is asked with a
dialog. To avoid the question about renaming similar files in one step, pass
/noquestion.

Automatizácia TortoiseSVN

178

Príkaz Popis

:diff Starts the external diff program specified in the TortoiseSVN settings. The
/path specifies the first file. If the option /path2 is set, then the diff
program is started with those two files. If /path2 is omitted, then the diff is
done between the file in /path and its BASE. To explicitly set the revision
numbers use /startrev:xxx and /endrev:xxx. If /blame is set and
/path2 is not set, then the diff is done by first blaming the files with the
given revisions.

:showcompare Depending on the URLs and revisions to compare, this either shows a unified
diff (if the option unified is set), a dialog with a list of files that have
changed or if the URLs point to files starts the diff viewer for those two files.

The options url1, url2, revision1 and revision2 must be
specified. The options pegrevision, ignoreancestry, blame and
unified are optional.

:conflicteditor Starts the conflict editor specified in the TortoiseSVN settings with the
correct files for the conflicted file in /path.

:relocate Opens the relocate dialog. The /path specifies the working copy path to
relocate.

:help Opens the help file.

:repostatus Opens the check-for-modifications dialog. The /path specifies the working
copy directory.

:repobrowser Starts the repository browser dialog, pointing to the URL of the working
copy given in /path or /path points directly to an URL. An additional
option /rev:xxx can be used to specify the revision which the repository
browser should show. If the /rev:xxx is omitted, it defaults to HEAD. If /
path points to an URL, the /projectpropertiespath:cesta/k/
wc specifies the path from where to read and use the project properties.

:ignore Adds all targets in /path to the ignore list, i.e. adds the svn:ignore
property to those files.

:blame Opens the blame dialog for the file specified in /path.

If the options /startrev and /endrev are set, then the dialog asking
for the blame range is not shown but the revision values of those options are
used instead.

If the option /line:nnn is set, TortoiseBlame will open with the specified
line number showing.

The options /ignoreeol, /ignorespaces and /
ignoreallspaces are also supported.

:cat Saves a file from an URL or working copy path given in /path to
the location given in /savepath:path. The revision is given in /
revision:xxx. This can be used to get a file with a specific revision.

:createpatch Creates a patch file for the path given in /path.

:revisiongraph Shows the revision graph for the path given in /path.

:lock Locks a file or all files in a directory given in /path. The 'lock' dialog is
shown so the user can enter a comment for the lock.

:unlock Unlocks a file or all files in a directory given in /path.

:rebuildiconcache Rebuilds the windows icon cache. Only use this in case the windows icons are
corrupted. A side effect of this (which can't be avoided) is that the icons on the
desktop get rearranged. To suppress the message box, pass /noquestion.

Automatizácia TortoiseSVN

179

Príkaz Popis

:properties Shows the properties dialog for the path given in /path.

Tabuľka D.1. Zoznam príkazov a možností

Examples (which should be entered on one line):

TortoiseProc.exe /command:commit
 /path:"c:\svn_wc\file1.txt*c:\svn_wc\file2.txt"
 /logmsg:"test log message" /closeonend:0

TortoiseProc.exe /command:update /path:"c:\svn_wc\" /closeonend:0

TortoiseProc.exe /command:log /path:"c:\svn_wc\file1.txt"
 /startrev:50 /endrev:60 /closeonend:0

D.2. Príkazy TortoiseIDiff

The image diff tool has a few command line options which you can use to control how the tool is started.
The program is called TortoiseIDiff.exe.

The table below lists all the options which can be passed to the image diff tool on the command line.

Option Popis

:left Path to the file shown on the left.

:lefttitle A title string. This string is used in the image view title instead of the full
path to the image file.

:right Path to the file shown on the right.

:righttitle A title string. This string is used in the image view title instead of the full
path to the image file.

:overlay If specified, the image diff tool switches to the overlay mode (alpha blend).

:fit If specified, the image diff tool fits both images together.

:showinfo Shows the image info box.

Tabuľka D.2. Zoznam prístupných možností

Example (which should be entered on one line):

TortoiseIDiff.exe /left:"c:\images\img1.jpg" /lefttitle:"image 1"
 /right:"c:\images\img2.jpg" /righttitle:"image 2"
 /fit /overlay

180

Dodatok E. Command Line Interface
Cross Reference

Sometimes this manual refers you to the main Subversion documentation, which describes Subversion in
terms of the Command Line Interface (CLI). To help you understand what TortoiseSVN is doing behind
the scenes, we have compiled a list showing the equivalent CLI commands for each of TortoiseSVN's
GUI operations.

Poznámka

Even though there are CLI equivalents to what TortoiseSVN does, remember that
TortoiseSVN does not call the CLI but uses the Subversion library directly.

If you think you have found a bug in TortoiseSVN, we may ask you to try to reproduce it using the CLI,
so that we can distinguish TortoiseSVN issues from Subversion issues. This reference tells you which
command to try.

E.1. Conventions and Basic Rules
In the descriptions which follow, the URL for a repository location is shown simply as URL, and an
example might be http://tortoisesvn.googlecode.com/svn/trunk. The working copy
path is shown simply as PATH, and an example might be C:\TortoiseSVN\trunk.

Dôležité

Because TortoiseSVN is a Windows Shell Extension, it is not able to use the notion of a
current working directory. All working copy paths must be given using the absolute path,
not a relative path.

Certain items are optional, and these are often controlled by checkboxes or radio buttons in TortoiseSVN.
These options are shown in [square brackets] in the command line definitions.

E.2. Príkazy TortoiseSVN
E.2.1. Získať

svn checkout [-N] [--ignore-externals] [-r rev] URL PATH

If Only checkout the top folder is checked, use the -N switch.

If Omit externals is checked, use the --ignore-externals switch.

If you are checking out a specific revision, specify that after the URL using -r switch.

E.2.2. Aktualizovať

svn info URL_of_WC
svn update [-r rev] PATH

Updating multiple items is currently not an atomic operation in Subversion. So TortoiseSVN first finds
the HEAD revision of the repository, and then updates all items to that particular revision number to avoid
creating a mixed revision working copy.

Command Line Interface Cross Reference

181

If only one item is selected for updating or the selected items are not all from the same repository,
TortoiseSVN just updates to HEAD.

No command line options are used here. Update to revision also implements the update command, but
offers more options.

E.2.3. Aktualizovať na revíziu

svn info URL_of_WC
svn update [-r rev] [-N] [--ignore-externals] PATH

If Only update the top folder is checked, use the -N switch.

If Omit externals is checked, use the --ignore-externals switch.

E.2.4. Odovzdať

In TortoiseSVN, the commit dialog uses several Subversion commands. The first stage is a status check
which determines the items in your working copy which can potentially be committed. You can review
the list, diff files against BASE and select the items you want to be included in the commit.

svn status -v PATH

If Show unversioned files is checked, TortoiseSVN will also show all unversioned files and folders
in the working copy hierarchy, taking account of the ignore rules. This particular feature has no direct
equivalent in Subversion, as the svn status command does not descend into unversioned folders.

If you check any unversioned files and folders, those items will first be added to your working copy.

svn add PATH...

When you click on OK, the Subversion commit takes place. If you have left all the file selection
checkboxes in their default state, TortoiseSVN uses a single recursive commit of the working copy. If you
deselect some files, then a non-recursive commit (-N) must be used, and every path must be specified
individually on the commit command line.

svn commit -m "LogMessage" [-N] [--no-unlock] PATH...

LogMessage here represents the contents of the log message edit box. This can be empty.

If Keep locks is checked, use the --no-unlock switch.

E.2.5. Porovnať

svn diff PATH

If you use Diff from the main context menu, you are diffing a modified file against its BASE revision.
The output from the CLI command above also does this and produces output in unified-diff format.
However, this is not what TortoiseSVN is using. TortoiseSVN uses TortoiseMerge (or a diff program of
your choosing) to display differences visually between full-text files, so there is no direct CLI equivalent.

You can also diff any 2 files using TortoiseSVN, whether or not they are version controlled. TortoiseSVN
just feeds the two files into the chosen diff program and lets it work out where the differences lie.

E.2.6. Zobraz denník

Command Line Interface Cross Reference

182

svn log -v -r 0:N --limit 100 [--stop-on-copy] PATH
 or
svn log -v -r M:N [--stop-on-copy] PATH

By default, TortoiseSVN tries to fetch 100 log messages using the --limit method. If the settings instruct
it to use old APIs, then the second form is used to fetch the log messages for 100 repository revisions.

If Stop on copy/rename is checked, use the --stop-on-copy switch.

E.2.7. Skontrolovať zmeny

svn status -v PATH
 or
svn status -u -v PATH

The initial status check looks only at your working copy. If you click on Check repository then the
repository is also checked to see which files would be changed by an update, which requires the -u switch.

If Show unversioned files is checked, TortoiseSVN will also show all unversioned files and folders
in the working copy hierarchy, taking account of the ignore rules. This particular feature has no direct
equivalent in Subversion, as the svn status command does not descend into unversioned folders.

E.2.8. Graf revízií

The revision graph is a feature of TortoiseSVN only. There's no equivalent in the command line client.

What TortoiseSVN does is an

svn info URL_of_WC
svn log -v URL

where URL is the repository root and then analyzes the data returned.

E.2.9. Prehliadanie úložiska

svn info URL_of_WC
svn list [-r rev] -v URL

You can use svn info to determine the repository root, which is the top level shown in the repository
browser. You cannot navigate Up above this level. Also, this command returns all the locking information
shown in the repository browser.

The svn list call will list the contents of a directory, given a URL and revision.

E.2.10. Upraviť konflikty

This command has no CLI equivalent. It invokes TortoiseMerge or an external 3-way diff/merge tool to
look at the files involved in the conflict and sort out which lines to use.

E.2.11. Vyriešené

svn resolved PATH

E.2.12. Premenovať

Command Line Interface Cross Reference

183

svn rename CURR_PATH NEW_PATH

E.2.13. Vymazať

svn delete PATH

E.2.14. Vrátiť

svn status -v PATH

The first stage is a status check which determines the items in your working copy which can potentially
be reverted. You can review the list, diff files against BASE and select the items you want to be included
in the revert.

When you click on OK, the Subversion revert takes place. If you have left all the file selection checkboxes
in their default state, TortoiseSVN uses a single recursive (-R) revert of the working copy. If you deselect
some files, then every path must be specified individually on the revert command line.

svn revert [-R] PATH...

E.2.15. Vyčistiť

svn cleanup PATH

E.2.16. Získať zámok

svn status -v PATH

Prvou fázou je kontorla stavu, ktorá zistí, ktoré súbory v vašej pracovnej kópií môžu byť zamknuté.
Môžete si vybrať objekty, ktoré chcete zamknúť.

svn lock -m "LockMessage" [--force] PATH...

LockMessage here represents the contents of the lock message edit box. This can be empty.

If Steal the locks is checked, use the --force switch.

E.2.17. Uvolniť zámok

svn unlock PATH

E.2.18. Vetva/značka

svn copy -m "LogMessage" URL URL
 alebo
svn copy -m "LogMessage" URL@rev URL@rev
 alebo
svn copy -m "LogMessage" PATH URL

Dialó pre Vetva/Značka vytvorí kópiu do úložiska. Sú tam tieto tri možnosti:

• HEAD revision in the repository

Command Line Interface Cross Reference

184

• Špecifická revízia v úložisku

• Pracovná kópia

, ktoré zodpovedajú trom predošlím príkazom.

LogMessage here represents the contents of the log message edit box. This can be empty.

E.2.19. Prepnúť

svn info URL_of_WC
svn switch [-r rev] URL PATH

E.2.20. Zlúčiť

svn merge [--dry-run] --force From_URL@revN To_URL@revM PATH

The Test Merge performs the same merge with the --dry-run switch.

svn diff From_URL@revN To_URL@revM

The Unified diff shows the diff operation which will be used to do the merge.

E.2.21. Exportovať

svn export [-r rev] [--ignore-externals] URL Export_PATH

This form is used when accessed from an unversioned folder, and the folder is used as the destination.

Exporting a working copy to a different location is done without using the Subversion library, so there's
no matching command line equivalent.

What TortoiseSVN does is to copy all files to the new location while showing you the progress of the
operation. Unversioned files/folders can optionally be exported too.

In both cases, if Omit externals is checked, use the --ignore-externals switch.

E.2.22. Premiestniť

svn switch --relocate From_URL To_URL

E.2.23. Vytvoriť úložisko tu

svnadmin create --fs-type fsfs PATH

E.2.24. Pridať

svn add PATH...

If you selected a folder, TortoiseSVN first scans it recursively for items which can be added.

E.2.25. Importovať

Command Line Interface Cross Reference

185

svn import -m LogMessage PATH URL

LogMessage here represents the contents of the log message edit box. This can be empty.

E.2.26. Obviniť

svn blame -r N:M -v PATH
svn log -r N:M PATH

If you use TortoiseBlame to view the blame info, the file log is also required to show log messages in a
tooltip. If you view blame as a text file, this information is not required.

E.2.27. Add to Ignore List

svn propget svn:ignore PATH > tempfile
{edit new ignore item into tempfile}
svn propset svn:ignore -F tempfile PATH

Because the svn:ignore property is often a multi-line value, it is shown here as being changed via a
text file rather than directly on the command line.

E.2.28. Vytvoriť záplatu

svn diff PATH > patch-file

TortoiseSVN creates a patch file in unified diff format by comparing the working copy with its BASE
version.

E.2.29. Použiť záplatu

Applying patches is a tricky business unless the patch and working copy are at the same revision. Luckily
for you, you can use TortoiseMerge, which has no direct equivalent in Subversion.

186

Dodatok F. Implementation Details
This appendix contains a more detailed discussion of the implementation of some of TortoiseSVN's
features.

F.1. Prekrývané ikony

Every file and folder has a Subversion status value as reported by the Subversion library. In the command
line client, these are represented by single letter codes, but in TortoiseSVN they are shown graphically
using the icon overlays. Because the number of overlays is very limited, each overlay may represent one
of several status values.

The Conflicted overlay is used to represent the conflicted state, where an update or switch results in
conflicts between local changes and changes downloaded from the repository. It is also used to indicate
the obstructed state, which can occur when an operation is unable to complete.

The Modified overlay represents the modified state, where you have made local modifications, the
merged state, where changes from the repository have been merged with local changes, and the
replaced state, where a file has been deleted and replaced by another different file with the same name.

The Deleted overlay represents the deleted state, where an item is scheduled for deletion, or the
missing state, where an item is not present. Naturally an item which is missing cannot have an overlay
itself, but the parent folder can be marked if one of its child items is missing.

The Added overlay is simply used to represent the added status when an item has been added to version
control.

The In Subversion overlay is used to represent an item which is in the normal state, or a versioned item
whose state is not yet known. Because TortoiseSVN uses a background caching process to gather status,
it may take a few seconds before the overlay updates.

The Needs Lock overlay is used to indicate when a file has the svn:needs-lock property set. For
working copies which were created using Subversion 1.4.0 and later, the svn:needs-lock status is
cached locally by Subversion and this is used to determine when to show this overlay. For working copies
which are in pre-1.4.x format, TortoiseSVN shows this overlay when the file has read-only status. Note
that Subversion automatically upgrades working copies when you update them, although the caching of
the svn:needs-lock property may not happen until the file itself is updated.

The Locked overlay is used when the local working copy holds a lock for that file.

Implementation Details

187

The Ignored overlay is used to represent an item which is in the ignored state, either due to a global
ignore pattern, or the svn:ignore property of the parent folder. This overlay is optional.

The Unversioned overlay is used to represent an item which is in the unversioned state. This is an
item in a versioned folder, but which is not under version control itself. This overlay is optional.

If an item has subversion status none (the item is not within a working copy) then no overlay is shown.
If you have chosen to disable the Ignored and Unversioned overlays then no overlay will be shown for
those files either.

An item can only have one Subversion status value. For example a file could be locally modified and
it could be marked for deletion at the same time. Subversion returns a single status value - in this case
deleted. Those priorities are defined within Subversion itself.

When TortoiseSVN displays the status recursively (the default setting), each folder displays an overlay
reflecting its own status and the status of all its children. In order to display a single summary overlay,
we use the priority order shown above to determine which overlay to use, with the Conflicted overlay
taking highest priority.

In fact, you may find that not all of these icons are used on your system. This is because the number
of overlays allowed by Windows is limited to 15. Windows uses 4 of those, and the remaining 11 can
be used by other applications. If there are not enough overlay slots available, TortoiseSVN tries to be a
“Good Citizen (TM)” and limits its use of overlays to give other apps a chance.

• Normálne, Zmenené a Konflikné sú vždy načítané a viditeľné.

• Vymazané je načitané ak je to možné, ale mení sa na Zmenené ak nie je dosť slotov.

• Iba na čítanie je načitané ak je to možné, inak sa použije Normálne.

• Zamknuté je načitané iba ak je obsadených menej ako 13 ikoniek. Ak už nie je dostatok miesta bude
nahradená za Normálne.

• Pridané je načítané iba ak bolo obsadených menej ako 14 ikoniek. Ak je nedostatok slotov zmení sa
na Zmenené.

188

Dodatok G. Securing Svnserve using
SSH

This section provides a step-by-step guide to setting up Subversion and TortoiseSVN to use the svn
+ssh protocol. If you already use authenticated SSH connections to login to your server, then you are
already there and you can find more detail in the Subversion book. If you are not using SSH but would
like to do so to protect your Subversion installation, this guide gives a simple method which does not
involve creating a separate SSH user account on the server for every subversion user.

In this implementation we create a single SSH user account for all subversion users, and use different
authentication keys to differentiate between the real Subversion users.

In this appendix we assume that you already have the subversion tools installed, and that you have created
a repository as detailed elsewhere in this manual. Note that you should not start svnserve as a service or
daemon when used with SSH.

Much of the information here comes from a tutorial provided by Marc Logemann, which can be
found at www.logemann.org [http://www.logemann.org/2007/03/13/subversion-tortoisesvn-ssh-howto/]
Additional information on setting up a Windows server was provided by Thorsten Müller. Thanks guys!

G.1. Nastavenie Linux servra
You need to have SSH enabled on the server, and here we assume that you will be using OpenSSH. On
most distributions this will already be installed. To find out, type:

ps xa | grep sshd

and look for ssh jobs.

One point to note is that if you build Subversion from source and do not provide any argument to ./
configure, Subversion creates a bin directory under /usr/local and places its binaries there. If
you want to use tunneling mode with SSH, you have to be aware that the user logging in via SSH needs
to execute the svnserve program and some other binaries. For this reason, either place /usr/local/
bin into the PATH variable or create symbolic links of your binaries to the /usr/sbin directory, or
to any other directory which is commonly in the PATH.

To check that everything is OK, login in as the target user with SSH and type:

which svnserve

This command should tell you if svnserve is reachable.

Create a new user which we will use to access the svn repository:

useradd -m svnuser

Be sure to give this user full access rights to the repository.

G.2. Nastavenie Windows servra
Install Cygwin SSH daemon as described here: http://pigtail.net/LRP/printsrv/cygwin-sshd.html

Create a new Windows user account svnuser which we will use to access the repository. Be sure to
give this user full access rights to the repository.

http://www.logemann.org/2007/03/13/subversion-tortoisesvn-ssh-howto/
http://www.logemann.org/2007/03/13/subversion-tortoisesvn-ssh-howto/
http://pigtail.net/LRP/printsrv/cygwin-sshd.html

Securing Svnserve using SSH

189

If there is no password file yet then create one from the Cygwin console using:

mkpasswd -l > /etc/passwd

G.3. SSH Client Tools for use with TortoiseSVN
Grab the tools we need for using SSH on the windows client from this site: http://
www.chiark.greenend.org.uk/~sgtatham/putty/ Just go to the download section and get Putty, Plink,
Pageant and Puttygen.

G.4. Creating OpenSSH Certificates
The next step is to create a key pair for authentication. There are two possible ways to create keys. The
first is to create the keys with PuTTYgen on the client, upload the public key to your server and use the
private key with PuTTY. The other is to create the key pair with the OpenSSH tool ssh-keygen, download
the private key to your client and convert the private key to a PuTTY-style private key.

G.4.1. Create Keys using ssh-keygen

Login to the server as root or svnuser and type:

ssh-keygen -b 1024 -t dsa -N passphrase -f keyfile

substituting a real pass-phrase (which only you know) and key file. We just created a SSH2 DSA key
with 1024 bit key-phrase. If you type

ls -l keyfile*

you will see two files, keyfile and keyfile.pub. As you might guess, the .pub file is the public
key file, the other is the private one.

Append the public key to those in the .ssh folder within the svnuser home directory:

cat keyfile.pub >> /home/svnuser/.ssh/authorized_keys

In order to use the private key we generated, we have to convert it to a putty format. This is because the
private key file format is not specified by a standards body. After you download the private key file to
your client PC, start PuTTYgen and use Conversions → Import key. Browse to your file keyfile
which you got from the server the passphrase you used when creating the key. Finally click on Save
private key and save the file as keyfile.PPK.

G.4.2. Create Keys using PuTTYgen

Use PuTTYgen to generate a public-key/private-key pair and save it. Copy the public key to the server
and append it to those in the .ssh folder within the svnuser home directory:

cat keyfile.pub >> /home/svnuser/.ssh/authorized_keys

G.5. Test using PuTTY
To test the connection we will use PuTTY. Start the program and on the Session tab set the hostname to
the name or IP address of your server, the protocol to SSH and save the session as SvnConnection or
whatever name you prefer. On the SSH tab set the preferred SSH protocol version to 2 and from Auth
set the full path to the .PPK private key file you converted earlier. Go back to the Sessions tab and hit
the Save button. You will now see SvnConnection in the list of saved sessions.

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Securing Svnserve using SSH

190

Click on Open and you should see a telnet style login prompt. Use svnuser as the user name and if all
is well you should connect directly without being prompted for a password.

You may need to edit /etc/sshd_config on the server. Edit lines as follows and restart the SSH
service afterwards.

PubkeyAuthentication yes
PasswordAuthentication no
PermitEmptyPasswords no
ChallengeResponseAuthentication no

G.6. Skúšanie SSH s TortoiseSVN
So far we have only tested that you can login using SSH. Now we need to make sure that
the SSH connection can actually run svnserve. On the server modify /home/svnuser/.ssh/
authorized_keys as follows to allow many subversion authors to use the same system account,
svnuser. Note that every subversion author uses the same login but a different authentication key, thus
you have to add one line for every author.

Note: This is all on one very long line.

command="svnserve -t -r <ReposRootPath> --tunnel-user=<author>",
 no-port-forwarding,no-agent-forwarding,no-X11-forwarding,
 no-pty ssh-rsa <PublicKey> <Comment>

There are several values that you need to set according to your setup.

<ReposRootPath> should be replaced with the path to the directory containing your repositories. This
avoids the need to specify full server paths within URLs. Note that you must use forward slashes even
on a Windows server, e.g. c:/svn/reposroot. In the examples below we assume that you have a
repository folder within the repository root called repos.

<author> should be replaced with the svn author that you want to be stored on commit. This also allows
svnserve to use its own access rights within svnserve.conf.

<PublicKey> should be replaced with the public key that you generated earlier.

<Comment> can be any comment you like, but it is useful for mapping an svn author name to the person's
real name.

Right click on any folder in Windows Explorer and select TortoiseSVN → Repo-Browser. You will be
prompted to enter a URL, so enter one in this form:

svn+ssh://svnuser@SvnConnection/repos

What does this URL mean? The Schema name is svn+ssh which tells TortoiseSVN how to handle
the requests to the server. After the double slash, you specify the user to connect to the server, in our
case svnuser. After the @ we supply our PuTTY session name. This session name contains all details
like where to find the private key and the server's IP or DNS. Lastly we have to provide the path to the
repository, relative to the repository root on the server, as specified in the authorized_keys file.

Click on OK and you should be able to browse the repository content. If so you now have a running SSH
tunnel in conjunction with TortoiseSVN.

Note that by default TortoiseSVN uses its own version of Plink to connect. This avoids a console window
popping up for every authentication attempt, but it also means that there is nowhere for error messages
to appear. If you receive the error “Unable to write to standard output”, you can try specifying Plink as

Securing Svnserve using SSH

191

the client in TortoiseSVN's network settings. This will allow you to see the real error message generated
by Plink.

G.7. SSH Configuration Variants
One way to simplify the URL in TortoiseSVN is to set the user inside the PuTTY session. For this you have
to load your already defined session SvnConnection in PuTTY and in the Connection tab set Auto
login user to the user name, e.g. svnuser. Save your PuTTY session as before and try the following
URL inside TortoiseSVN:

svn+ssh://SvnConnection/repos

This time we only provide the PuTTY session SvnConnection to the SSH client TortoiseSVN uses
(TortoisePlink.exe). This client will check the session for all necessary details.

At the time of writing PuTTY does not check all saved configurations, so if you have multiple
configurations with the same server name, it will pick the first one which matches. Also, if you edit the
default configuration and save it, the auto login user name is not saved.

Many people like to use Pageant for storing all their keys. Because a PuTTY session is capable of storing
a key, you don't always need Pageant. But imagine you want to store keys for several different servers;
in that case you would have to edit the PuTTY session over and over again, depending on the server you
are trying to connect with. In this situation Pageant makes perfect sense, because when PuTTY, Plink,
TortoisePlink or any other PuTTY-based tool is trying to connect to an SSH server, it checks all private
keys that Pageant holds to initiate the connection.

For this task, simply run Pageant and add the private key. It should be the same private key you defined
in the PuTTY session above. If you use Pageant for private key storage, you can delete the reference
to the private key file in your saved PuTTY session. You can add more keys for other servers, or other
users of course.

If you don't want to repeat this procedure after every reboot of your client, you should place Pageant
in the auto-start group of your Windows installation. You can append the keys with complete paths as
command line arguments to Pageant.exe

The last way to connect to an SSH server is simply by using this URL inside TortoiseSVN:

svn+ssh://svnuser@100.101.102.103/repos
svn+ssh://svnuser@mydomain.com/repos

As you can see, we don't use a saved PuTTY session but an IP address (or domain name) as the connection
target. We also supply the user, but you might ask how the private key file will be found. Because
TortoisePlink.exe is just a modified version of the standard Plink tool from the PuTTY suite, TortoiseSVN
will also try all the keys stored in Pageant.

If you use this last method, be sure you do not have a default username set in PuTTY.
We have had reports of a bug in PuTTY causing connections to close in this case. To
remove the default user, simply clear HKEY_CURRENT_USER\Software\SimonTatham\Putty
\Sessions\Default%20Settings\HostName

192

Register
Aktualizovať Tento príkaz Subversion stiahne posledné zmeny z úložiska do vašej

pracovnej kópie, zlučovaním zmien od ostatných so zmenami vo
vašej pracovnej kópií.

BDB Berkeley DB. Dobre otestovaná databáza pre úložiská, ktorá nemôže
byť použitá na sieťovom zdielaní. Predvolená pre úložiská pred
verziou 1.2.

Exportovať Príkaz vytvorí kópiu verziovaného adresára, zhodnú s pracovnou
kópiou, ale bez lokálneho .svn adresára.

FSFS A proprietary Subversion filesystem backend for repositories. Can
be used on network shares. Default for 1.2 and newer repositories.

GPO “Group policy object” Objekt skupinovej politiky

Historia Zobrazí históriu revízií súboru, alebo adresára. Tiež známa ako
“Denník”.

Hlavná revízia Aktuálna základová revízia súboru, alebo adresára vo vašej
pracovnej kópií. Toto je revízia súboru, alebo adresára z času
spustenia poslednej aktualizácie. Základná revízia nie je zhodná s
hlavnou revíziou.

Hlavná revízia Posledná revízia súboru, alebo adresára v úložisku.

Importovať Príkaz Subversion k načítaniu celej adresárovej štruktúry do úložiska
v jednej revízií.

Konflikt When changes from the repository are merged with local changes,
sometimes those changes occur on the same lines. In this case
Subversion cannot automatically decide which version to use and the
file is said to be in conflict. You have to edit the file manually and
resolve the conflict before you can commit any further changes.

Kopírovať V úložisku Subversion môžete vytvoriť kópiu jedného súboru,
alebo celej adresárovej vetvy. Tieto sú implementované ako “lacné
kópie”, ktoré sa správo trochu ako odkaz na pôvodný súbor,
takže nezaberajú veľa miesta. Vytváranie kópií zachováva históriu
jednotlivých kopírovaných objetov, takže môžete sledovať zmeny,
ktoré boli vykonané pred vytvorením kópie.

Obviniť This command is for text files only, and it annotates every line to
show the repository revision in which it was last changed, and the
author who made that change. Our GUI implementation is called
TortoiseBlame and it also shows the commit date/time and the log
message when you hover the mouse of the revision number.

Odovzdať Príkaz Subversion, ktorý posunie zmeny vašej miestnej pracovnej
kópie späť do úložiska, vytvoriac novú revíziu.

Porovnať Skratka pre “Zobraziť rozdiely”. Veľmi užitočné keď chcete vidieť
aké zmeny boli vykonané.

Pracovná kópia Toto je vaše “pieskovisko”, miesto kde môžete pracovať na
verziovaných súboroch, ktoré sa sa typicky nachádza na pevnom
disku. Pracovnú kópiu vytvárate príkazom “Získať” z úložiska, a
zmeny môžete poslať do úložiska príkazom “Odovzdať”.

Register

193

Premiestniť Keď sa premiestnilo vaše úložisko, pretože ste ho premiestnili na
iné mieto na servery, alebo sa zmenilo doménové meno servera,
potrebujete “premiestniť” vašu pracovnú kópiu, aby URL úložiska
ukazovala na nové umiestnenie.

Note: you should only use this command if your working copy
is referring to the same location in the same repository, but the
repository itself has moved. In any other circumstance you probably
need the “Switch” command instead.

Prepnúť Just as “Update-to-revision” changes the time window of a working
copy to look at a different point in history, so “Switch” changes the
space window of a working copy so that it points to a different part
of the repository. It is particularly useful when working on trunk and
branches where only a few files differ. You can switch your working
copy between the two and only the changed files will be transferred.

Pridať Príkaz Subversion, ktorý sa používa na pridanie súboru, alebo
adresára do pracovnej kópie. Nové objekty budú pridané do úložiska
pri odovzdaní.

Revízia Pri každom oovzdaní zmien, vytvárate v úložisku novú “revíziu”.
Každá revízia zodpovedá stavu stromu úložiska v danom čase v jeho
histórií. Keď sa chcete vrátit v čase môžete si prezrieť úložisko ako
bolo vo revízií N.

V inom zmysle revízia môže odkazovať-poukazovať na zmeny, ktoré
boli spravené prei tvorbe danej revízie.

SVN Často použivaná skratka pre Subversion

Meno protokolu pre Subversion použitého v servery úložiska
“svnserve”.

Úložisko A repository is a central place where data is stored and maintained. A
repository can be a place where multiple databases or files are located
for distribution over a network, or a repository can be a location that
is directly accessible to the user without having to travel across a
network.

Vetva A term frequently used in revision control systems to describe what
happens when development forks at a particular point and follows
2 separate paths. You can create a branch off the main development
line so as to develop a new feature without rendering the main line
unstable. Or you can branch a stable release to which you make only
bug fixes, while new developments take place on the unstable trunk.
In Subversion a branch is implemented as a “cheap copy”.

Vlastnosť Okrem verziovania, Subversion umožňuje pridať aj verziované
metadata - označované ako “vlastnosti” - ku každému verziovanému
súboru a adresáru. Každá vlastnosť má meno a hodnotu,
podobne ako kľúče windows registry. Subversion ma niekoľko
špeciálnych vlastností pre vnútorné použite, ako je svn:eol-
style. TortoiseSVN má nietoré tiež, ako je tsvn:logminsize.
Možete pridávať vlastné vlastnosti s menom a hodnotou podľa vašej
vôle.

Vlastnosť revízie (revprop) Tak ako súbory môžu mať vlastnosti, aj každá revízia v
úložisku. Niektoré 'revpops' sú pridané automaticky pri vytvorení
revízie. Menovite svn:date svn:author svn:log, ktoré

Register

194

reprezentujú dátum, čas, autora a záznam. Tieto vlastnosti môžu byť
menené, ala niesú verziované, teda tieto zmeny sú trvalé a nemôžu
byť vrátené.

Vrátiť Subversion udržuje kópiu “pôvodnej” verzie každého súboru, tak ako
bol pri poslednej aktualizácií pracovnej kópie. Ak ste urobili zmeny
a rozhodli ste sa ich vrátiť, môžete použiť príkaz “vrátiť” na vrátenie
sa k pôvodnej verzií.

Vyčistiť To quote from the Subversion book: “ Recursively clean up the
working copy, removing locks and resuming unfinished operations.
If you ever get a working copy locked error, run this command to
remove stale locks and get your working copy into a usable state
again. ” Note that in this context lock refers to local filesystem
locking, not repository locking.

Vymazať When you delete a versioned item (and commit the change) the item
no longer exists in the repository after the committed revision. But
of course it still exists in earlier repository revisions, so you can still
access it. If necessary, you can copy a deleted item and “resurrect”
it complete with history.

Vyriešiť When files in a working copy are left in a conflicted state following a
merge, those conflicts must be sorted out by a human using an editor
(or perhaps TortoiseMerge). This process is referred to as “Resolving
Conflicts”. When this is complete you can mark the conflicted files
as being resolved, which allows them to be committed.

Zamknúť When you take out a lock on a versioned item, you mark it in the
repository as non-committable, except from the working copy where
the lock was taken out.

Záplata If a working copy has changes to text files only, it is possible to
use Subversion's Diff command to generate a single file summary
of those changes in Unified Diff format. A file of this type is often
referred to as a “Patch”, and it can be emailed to someone else (or
to a mailing list) and applied to another working copy. Someone
without commit access can make changes and submit a patch file for
an authorized committer to apply. Or if you are unsure about a change
you can submit a patch for others to review.

Záznam-denník Zobrazí históriu revízií súboru, alebo adresára. Tiež známa ako
“História”.

Získať Príkaz Suversion, ktorý vytvorí miestnu pracovnú kópiu v prázdnom
adresáry stiahnutím verziovaných súborov z úložiska.

Zlúčiť Proces, ktorým sa zmeny z úložiska pridajú k vašej pracovnej kópií,
bez porušenia akýchkoľvek zmien, ktoré ste vykonali. Niekedy tieto
zmeny nemôžu byť pridané automaticky a pracovná kópia sa dostane
do stavu konfliktu.

Zlučovanie sa deje automaticky pri aktualizovaní vašej pracovnej
kópie. Príkazom TortoiseSVN Merge možete zlúčiť aj určené zmeny
z iných vetiev.

195

Zoznam
Symboly
.svn adresár, 157
_svn adresár, 157

A
aktualizovať, 50, 169
annotate, 113
Apache, 25
autentifikácia, 39
auto-props, 91
automatizácia, 176, 179
Autorizácia, 29

B
bug tracking, 125

C
case change, 85
Cesty UNC, 16
check in, 45
check new version, 173
checkout link, 19
CLI, 180
COM, 158, 163
COM SubWCRev interface, 160
command line client, 180

D
deploy, 173
detach from repository, 171
disable functions, 174
dočasné súbory, 40
domain controller, 173
domaincontroller, 30
drag handler, 38
drag-n-drop, 38

E
explorer, 1
exportovať, 122
exportovať zmeny, 76
externé, 93, 170
externé úložiská, 93
extrahovanie verzie, 158

F
FAQ, 167
filter, 70

G
globálne vylúčenie, 130
globbing, 82
GPO, 173

graf, 117
graf revízií, 117

H
história, 61

I
IBugtraqProvider, 163
ignorovať, 81
ikonky, 55
import in place, 42
importovať, 40
Index of projects, 29
inštalovať, 3
issue tracker, 125, 163

J
jazykové balíčky, 3

K
klientské pripojené (hook) skripty, 151
Kľúčové slová, 89
Kniha Subversion, 5
konflikt, 9, 51
konflikt stromov, 51
kontextové menu, 36
kontrola aktualizácie, 173
kontrola pravopisu, 3
kopírovať, 96, 115
kopírovať súbory, 80

L
link, 19
locking, 108

M
mark release, 96
maximalizovanie, 40
merge reintegrate, 107
merge tracking, 106
merge tracking log, 68
mod_authz_svn, 26, 29
msi, 173
Multiple authentication, 31

N
nastavenia, 129
NTLM, 30

O
obrázkové porovnaie, 77
obviniť, 113
odovzdať, 45
odstránenie verziovania, 171
odstrániť, 83
overlay priority, 186

Zoznam

196

P
pattern matching, 82
plugin, 163
položky kontextového menu, 174
porovnať, 74, 74, 111
porovnať adresáre, 170
porovnať revízie, 76
porovnať súbory, 170
porovnávacie nástroje, 78
porovnávanie, 59
poslať zmeny, 45
pracovná kópia, 10
praise, 113
prázdna správa, 168
Prehliadač úložiska, 115
preklady, 3
prekrytia, 55, 186
premenovať, 84, 115, 168
premenovať súbory, 80
premiestniť, 124
prepnúť, 98
presunúť, 84
presunutý server, 124, 124
presúvanie, 168
presúvať súbory, 80
Prezerač úložiska, 129
prezrieť zmeny, 55
pridať, 79
pridať súborydo úložiska, 40
príkazový riadok, 176, 179
Pripnuté (hook)skripty, 19, 151
pripnutia, 19
Prístup, 16
projekty ASP, 174
proxy server, 142

R
readonly, 108
registre, 155
reorganize, 168
revízia, 12, 117
revprops, 69
right drag, 38
right-click, 36
rollback, 169
rozšíriť kľúčové slová, 89

S
SASL, 23
server viewer, 115
server-side actions, 115
serverovské pripnuté (hook) skripty, 19
shortcut, 171
Sieťové zdielanie, 16
skupinová politika, 173, 174
sledovanie chýb, 125, 125
slovník, 3

Sĺpce Explorer-a, 57
spájacie nástroje, 78
späť, 86
special files, 42
spoločné projekty, 170
správa denníka, 168
správa verzií, 1
správy denníka, 61
správy odovzdávania, 61
spríva odovzdania, 168
SSL, 32
SSPI, 30
štatistiky, 70
stav, 55, 57
stav pracovnej kópie, 55
SUBST drives, 141
SubWCRev, 158
SVNParentPath, 28, 29
SVNPath, 28
svnserve, 20, 21
SVN_ASP_DOT_NET_HACK, 174

T
TortoiseIDiff, 77
TortoiseSVN link, 19

U
úložisko, 5, 40
unified diff, 111
unversion, 124, 171
unversioned 'working copy', 122
unversioned files/folders, 81
úpravava denníka/autora, 69

V
vendor projects, 170
version new files, 79
version number in files, 158
verzia, 173
vetva, 80, 96
ViewVC, 129
vlastnosti, 87
Vlastnosti projektu, 91
Vlastnosti revízie, 69
Vlastnosti Subversion, 88
Vlastnosti TortoiseSVN, 91
vrátiť, 86, 169
vrátiť odovzdanie, 169
vrátiť zmeny, 169
VS2003, 174
vyčistiť, 87
vylúčené cesty, 130
vymazať, 83
vyriešiť, 51
vytvorí pracovnú kópiu, 42
Vytvoriť

Command Line Client, 15

Zoznam

197

TortoiseSVN, 15
vytvoriť úložisko, 15

W
web view, 129
WebDAV, 25
website, 19
WebSVN, 129
Windows domain, 30
Windows šel, 1

Z
záloha, 18
záplata, 111
zásobník denníka, 148
Záznam-denník, 61
získanie zmeny, 50
získať, 42
zlúčenie konfliktov, 106
zlúčiť, 99

reintegrate, 102
rozsah revízií, 100
two trees, 103

zmenená URL, 124
zmenený URL úložiska, 124
zmeny, 57
zmieny, 170
značka, 80, 96
zoznam zmien, 59
zvuky, 130

	TortoiseSVN
	Obsah
	Predhovor
	1. Uzívatelia
	2. Sprievodca citatela
	3. TortoiseSVN je zdarma!
	4. Komunita
	5. Podakovania
	6. Pouzitá terminológia

	Kapitola 1. Úvod
	1.1. Co je TortoiseSVN?
	1.2. História TortoiseSVN
	1.3. Vlastnosti TortoiseSVN
	1.4. Instalovanie TortoiseSVN
	1.4.1. Poziadavky na systém
	1.4.2. Instalácia
	1.4.3. Jazykové balícky
	1.4.4. Kontrola pravopisu

	Kapitola 2. Základná verzia-ovládacie prevedenie
	2.1. Úlozisko
	2.2. Modely verziovania
	2.2.1. Problém zdielania súborov
	2.2.2. Riesenie typu Zamknút-Upravit-Odomknút
	2.2.3. Riesenie typu Kopírovat-Upravit-Zlúcit
	2.2.4. Co robí Subversion?

	2.3. Subversion v Akcii
	2.3.1. Pracovné kópie
	2.3.2. URL úloziska
	2.3.3. Revízie
	2.3.4. Ako pracovné kópie vyhladávajú úloziská.

	2.4. Súhrn

	Kapitola 3. Úlozisko
	3.1. Vytvorenie úloziska
	3.1.1. Vytvorenie úloziska pomocou príkazového radku.
	3.1.2. Vytváranie úloziska s TortoiseSVN
	3.1.3. Lokálny prístup do úloziska
	3.1.4. Prístup k úlozisku v zdielanej sieti.
	3.1.5. Návrh úloziska

	3.2. Záloha úloziska
	3.3. Serverovské pripnuté (hook) skripty
	3.4. Checkout Links
	3.5. Pristupovanie k úlozisku
	3.6. Svnserve Based Server
	3.6.1. Úvod
	3.6.2. Instalácia svnserve
	3.6.3. Running svnserve
	3.6.3.1. Spustit svnserver ako servis

	3.6.4. Základná auhentifikácia so svnserve
	3.6.5. Lepsie zabezpecenie pomocou SASL
	3.6.5.1. Co je SASL?
	3.6.5.2. SASL authentifikácia
	3.6.5.3. SASL Encryption

	3.6.6. Authentication with svn+ssh
	3.6.7. Path-based Authorization with svnserve

	3.7. Server na báze Apache
	3.7.1. Úvod
	3.7.2. Installing Apache
	3.7.3. Instalácia subversion
	3.7.4. Konfigurácia
	3.7.5. Multiple Repositories
	3.7.6. Path-Based Authorization
	3.7.7. Authentication With a Windows Domain
	3.7.8. Multiple Authentication Sources
	3.7.9. Zabezpecenie servera pomocou SSL
	3.7.10. Using client certificates with virtual SSL hosts

	Kapitola 4. Sprievodca denného pouzitia
	4.1. Zacíname
	4.1.1. Prekrývané ikony
	4.1.2. Kontextové Menu
	4.1.3. Drag and Drop
	4.1.4. Klávesové skratky
	4.1.5. Authentifikácia
	4.1.6. Maximalizovanie Okien

	4.2. Importing Data Into A Repository
	4.2.1. Importovat
	4.2.2. Import in Place
	4.2.3. Special Files

	4.3. Získat pracovnú kópiu
	4.3.1. Hlbka získavania

	4.4. Posielanie vasich zmien do úloziska
	4.4.1. Dialóg odovzávania
	4.4.2. Change Lists
	4.4.3. Excluding Items from the Commit List
	4.4.4. Odovzdanie správ denníka
	4.4.5. Priebeh odovzdávania

	4.5. Update Your Working Copy With Changes From Others
	4.6. Riesit konflikty
	4.6.1. Konflikty súborov
	4.6.2. Konfliktov stromov
	4.6.2.1. Local delete, incoming edit upon update
	4.6.2.2. Local edit, incoming delete upon update
	4.6.2.3. Local delete, incoming delete upon update
	4.6.2.4. Local missing, incoming edit upon merge
	4.6.2.5. Local edit, incoming delete upon merge
	4.6.2.6. Local delete, incoming delete upon merge

	4.7. Získavnie informácií o stave
	4.7.1. Prekrývané ikony
	4.7.2. Stlpce TortoiseSVN vo Windows Explorer-i
	4.7.3. Miestny a vzdialeny stav
	4.7.4. Prezeranie rozdielov

	4.8. Change Lists
	4.9. Revision Log Dialog
	4.9.1. Invoking the Revision Log Dialog
	4.9.2. Akcie denníka revízií
	4.9.3. Získanie dalsích informácií
	4.9.4. Získavnie viac správ denníka
	4.9.5. Current Working Copy Revision
	4.9.6. Merge Tracking Features
	4.9.7. Changing the Log Message and Author
	4.9.8. Filtrovanie sráv denníka
	4.9.9. Statistické informácie
	4.9.9.1. Stana statístík
	4.9.9.2. Odovzdania podla autora
	4.9.9.3. Commits by date Page

	4.9.10. Offline Mode
	4.9.11. Refreshing the View

	4.10. Prezeranie rozdielov
	4.10.1. Rozdiely v súboroch
	4.10.2. Line-end and Whitespace Options
	4.10.3. Porovavanie adresárov
	4.10.4. Diffing Images Using TortoiseIDiff
	4.10.5. Externé Porovnávacie/Zlucovacie Nástroje

	4.11. Adding New Files And Directories
	4.12. Copying/Moving/Renaming Files and Folders
	4.13. Ignorovanie súborov a adresárov
	4.13.1. Pattern Matching in Ignore Lists

	4.14. Vymazávanie, Premenovanie a Presúvanie
	4.14.1. Vymazavanie súborov a adresárov
	4.14.2. Presúvanie súborov a adresárov
	4.14.3. Changing case in a filename
	4.14.4. Dealing with filename case conflicts
	4.14.5. Repairing File Renames
	4.14.6. Vymazávanie neverziovaných súborov

	4.15. Vrátit zmeny
	4.16. Vycistit
	4.17. Nastavenia Projektu
	4.17.1. Vlastnosti Subversion
	4.17.1.1. svn:keywords
	4.17.1.2. Pridanie a úprava vlastností
	4.17.1.3. Exporting and Importing Properties
	4.17.1.4. Binárne vlastností
	4.17.1.5. Automatic property setting

	4.17.2. TortoiseSVN Vlastnosti projektu

	4.18. externé objekty
	4.18.1. externé adresáre
	4.18.2. External Files

	4.19. Branching / Tagging
	4.19.1. Vytvorenie vetvy / znacky
	4.19.2. To Checkout or to Switch...

	4.20. Zlucovanie
	4.20.1. Zlucenie rozshahu revízií
	4.20.2. Reintegrate a branch
	4.20.3. Merging Two Different Trees
	4.20.4. Nastavenia zlucovania
	4.20.5. Prezeranie výsledov zlúcovania
	4.20.6. Sledovanie zlucovania
	4.20.7. Handling Conflicts during Merge
	4.20.8. Merge a Completed Branch
	4.20.9. Feature Branch Maintenance

	4.21. Locking
	4.21.1. How Locking Works in Subversion
	4.21.2. Získanie zámku
	4.21.3. Uvolnenie zámku
	4.21.4. Kontrola stavu zamknutia
	4.21.5. Making Non-locked Files Read-Only
	4.21.6. The Locking Hook Scripts

	4.22. Creating and Applying Patches
	4.22.1. Tvorba súboru záplaty
	4.22.2. Pouzitie záplaty

	4.23. Who Changed Which Line?
	4.23.1. Blame for Files
	4.23.2. Obvinit rozdiely

	4.24. Prezeranie úloziska
	4.25. Graf revízií
	4.25.1. Uzly grafu revizií
	4.25.2. Changing the View
	4.25.3. Pouzitie grafu
	4.25.4. Refreshing the View
	4.25.5. Pruning Trees

	4.26. Exporting a Subversion Working Copy
	4.26.1. Removing a working copy from version control

	4.27. Premiestnenie pracovnej kópie
	4.28. Integration with Bug Tracking Systems / Issue Trackers
	4.28.1. Adding Issue Numbers to Log Messages
	4.28.1.1. Issue Number in Text Box
	4.28.1.2. Issue Numbers Using Regular Expressions

	4.28.2. Getting Information from the Issue Tracker

	4.29. Integration with Web-based Repository Viewers
	4.30. TortoiseSVN Nastavenia
	4.30.1. Hlavné Nastavenia
	4.30.1.1. Nastavenia kontextového menu
	4.30.1.2. TortoiseSVN Dialog Settings 1
	4.30.1.3. TortoiseSVN Dialog Settings 2
	4.30.1.4. Nastavenia farieb TortoiseSVN

	4.30.2. Nastavenia grafu revizií
	4.30.2.1. Farby grafu revízií

	4.30.3. Nastavenia prekrývania ikon
	4.30.3.1. Nastavenie sady ikon

	4.30.4. Sietové nastavnia
	4.30.5. Nastavnie externých programov
	4.30.5.1. Prezerac rozdielov
	4.30.5.2. Spájací nástroj
	4.30.5.3. Rozsírené nastavenia rozdiely/zlúcenie
	4.30.5.4. Unified Diff Viewer

	4.30.6. Saved Data Settings
	4.30.7. Log Caching
	4.30.7.1. Cached Repositories
	4.30.7.2. Log Cache Statistics

	4.30.8. Klientské (pripnuté) skripty
	4.30.8.1. Issue Tracker Integration

	4.30.9. Nastavenia TortoiseBlame
	4.30.10. Nastavenia registrov
	4.30.11. Pracovné adresáre Subversion

	4.31. Final Step

	Kapitola 5. Program SubWCRev
	5.1. Parametre príkazového riadka SubWCRev
	5.2. Nahradzovanie klúcových slov.
	5.3. Príklad klúcových slov
	5.4. COM interface

	Kapitola 6. IBugtraqProvider interface
	6.1. The IBugtraqProvider interface
	6.2. The IBugtraqProvider2 interface

	Dodatok A. Frequently Asked Questions (FAQ)
	Dodatok B. Ako spravím ...
	B.1. Presunút/kopírovat viacero súborov naraz.
	B.2. Force users to enter a log message
	B.2.1. Hookskripty na servery
	B.2.2. Vlastnost projektu

	B.3. Update selected files from the repository
	B.4. Roll back (Undo) revisions in the repository
	B.4.1. Use the revision log dialog
	B.4.2. Pouzitie dialógu spájania
	B.4.3. Pouzitie svndumpfilter

	B.5. Compare two revisions of a file or folder
	B.6. Zahrnutie spolocného kódu
	B.6.1. Pouzitie svn:externals
	B.6.2. Pouzitie vnorenej pracovnej kópie
	B.6.3. Pouzitie relativnej cesty

	B.7. Create a shortcut to a repository
	B.8. Ignore files which are already versioned
	B.9. Unversion a working copy
	B.10. Odtránenie pracovnej kópie

	Dodatok C. Useful Tips For Administrators
	C.1. Rozsirovanie TortoiseSVN pomocou skupinovaj politiky
	C.2. Presmerovanie aktualizacnej kontroli
	C.3. Setting the SVN_ASP_DOT_NET_HACK environment variable
	C.4. Zakázat polozky kontextového menu

	Dodatok D. Automatizácia TortoiseSVN
	D.1. Príkazy TortoiseSVN
	D.2. Príkazy TortoiseIDiff

	Dodatok E. Command Line Interface Cross Reference
	E.1. Conventions and Basic Rules
	E.2. Príkazy TortoiseSVN
	E.2.1. Získat
	E.2.2. Aktualizovat
	E.2.3. Aktualizovat na revíziu
	E.2.4. Odovzdat
	E.2.5. Porovnat
	E.2.6. Zobraz denník
	E.2.7. Skontrolovat zmeny
	E.2.8. Graf revízií
	E.2.9. Prehliadanie úloziska
	E.2.10. Upravit konflikty
	E.2.11. Vyriesené
	E.2.12. Premenovat
	E.2.13. Vymazat
	E.2.14. Vrátit
	E.2.15. Vycistit
	E.2.16. Získat zámok
	E.2.17. Uvolnit zámok
	E.2.18. Vetva/znacka
	E.2.19. Prepnút
	E.2.20. Zlúcit
	E.2.21. Exportovat
	E.2.22. Premiestnit
	E.2.23. Vytvorit úlozisko tu
	E.2.24. Pridat
	E.2.25. Importovat
	E.2.26. Obvinit
	E.2.27. Add to Ignore List
	E.2.28. Vytvorit záplatu
	E.2.29. Pouzit záplatu

	Dodatok F. Implementation Details
	F.1. Prekrývané ikony

	Dodatok G. Securing Svnserve using SSH
	G.1. Nastavenie Linux servra
	G.2. Nastavenie Windows servra
	G.3. SSH Client Tools for use with TortoiseSVN
	G.4. Creating OpenSSH Certificates
	G.4.1. Create Keys using ssh-keygen
	G.4.2. Create Keys using PuTTYgen

	G.5. Test using PuTTY
	G.6. Skúsanie SSH s TortoiseSVN
	G.7. SSH Configuration Variants

	Register
	Zoznam

