Qizx/open Manual

Axyana Software, XMLmind <qgi zx- suppor t @ni ni nd. con>

Qizx/open Manual
by Axyana Software

Version 4.1

Published September 28, 2010
Copyright © 2010 Axyana Software, XMLmind

I 10 v T o T 1

I o L= o T =] 0 1T o1 £ 2
2. INSTAIIALION ..ot e et 3
O L4 1| o I 0T) ST SPP 3

2. Manual install On WINAOWSuiiiiiiie e 3

3. Content Of the dISTIIDULIONcooie e e e e e aene 4
IO S T T L= PR 5
4. Getting Started With QIZX/OPENv.iiii e e e 6
1. Writing and running queries With QIizX StUIOcciiiiiiiii e 6

2. Running queries with the gizx command line t00lcoooiiiiiiiiii e 8

I B TCL T oo T=T U o L= 10
5. Programming with the QIzX/OPEN APLcovrii e 11
1. Compiling and running the code SAMPIESc..iiiiiiiiiii e 11

2. Creating @ WOIK SESSIONuuueiiieiiieeie e et e e e e e e e e e e e e e e e e e et e e et e e et e e e eaaneas 11

3. Compiling and eXECULING QUETIES .. .u.vveeriii e et e e e e e e e e e e e s e e e e bt e e aaeeaanaees 11

3.1. Compiling and running the code of this 1€SSONcccoviviiiii i, 13

TV, RETEIBNCE ...t e ettt et 14
Differences with Qizx database ENGINEocvuiiiiiiiiii e XV
LAV AP e XV

2. FUNCEION TNIAOC() ©.iiiniii e e XV

3. FUNCtion :COIIECHION() ..u.ivee i XV

6. General XQuery extension FUNCLIONSooiiiiiii e e a s 16
1. SERIANIZALION ...t e 16

2. XSL TransTOrMEtionccouueiieiii e e e e e e e 17

3. DYNAMIC BVAIUALIONiivicii et e e e e e e e e e e e e 19

4, Pattern-mMatChiNg ... ccoviii e 19

5. DAt AN TIME L.ttt e et e et e e e e e 20

5.1. Differences with W3C SpeCifiCationsccoveiiiiiiiiiiiii e 20

5.2, CaSE EXEBNSIONS «.evvtieiiitt it ettt ettt et e et e e et e e e e e aaa 20

5.3, Additional CONSIIUCTONSiiiiii e 21

5.4, AJAItIONAl ACCESSONS ...ttt ettt ettt e e e e e e e eenes 21

B. Error NANAIINGoociiic e 22

7. IMISCERIIANEOUS ..ot e e et n e e et e e e aann s 23

7. Full-text XQuery extension FUNCIIONSociuiiiiiiii e e e e e aeas 25
1. Simplified FUll-TEXE SEAICNv i e 25

1.1. Definition of the simple full-text SYNtaXcccoveiiiiiiiiii e 25

1.2, SArCh FUNCLION ... 26

2. Other full-text extension FUNCLIONSoooiii i e e 27

B EXAMIPIES et 30

ST Y- R = 11 0o [T PP 33
R T TP 36
0 172 P 37
QUZX STUAIO HEIP v e e e 44
1. Starting QIzZX STUIOiiii i e e 44

2. The XML LIBraries' tahuieiiiiec e 45

O o] T Y o] 0T PP 46

2.2. Metadata PrOPEItIES VIBWc.uuiiiieiiiieei e s e e e e e et e s e e s e e e e e e et e aanaeee 47

2.3. DOCUMENT AISPIAY ...vvviiiiie e e 48

2.3.1. Export document to filecooiiiiiiii 48

2.3.2. VIBW MOTE ...ttt e e e 48

T 2T O 1111 VA - o P 48

3L XQUETY EQIOr .vuiiiiii i 49

311 QUENY EXBCULION L..vii i e e e 50

3.1.2. Stopping QUETY EXECULIONiiit i eii e e e e e e e e e e e e e e e e aan s 50

3.1.3. Clear €dItOr tEXEeeiieiie e 50

3.2 RESUIE VIBW e e 50

3.2.1. Move forward and backward in result SEQUENCEccoevvviieiiiieiiiiiiieeeann, 51

3.2.2. Export result sequence to afileccveiiiiiiiiiii 51

Qizx/open Manual

3.2.3. Change the display style of resultscccccoiiiiiiiii e, 51

3.3, MIESSAGE VIBWW ..ttt eiiii et et e e et e e e e e e e e e e et e e e e a e 51
R 1 T o o [P 52
4.1. Open local Library Group dialogccouviiiiiiiiiiieiii e e 52
4.2, ConNect t0 SErver dialogcvvvriiiii e 52
4.3. "XML Catalogs' dialogccouuiiiiiiiiiiei e 53
4.4, 'Create Collection' dialogccovviiiiiiiiii i 53
4.5. 'Import Documents' dialogviiviiiiiiie e 53
4.6. 'EXPOrt DOCUMENt dialoguuvvvieiiiieie e 55
4.7. Metadata Property Editor dialogccoviiiiiiiiiiicii e 55
4.8. 'Change Indexing Specification’ dialogccooeviiiiiiiiiii e, 55
4.8.1. Reindexing Dialoguiviiiieiiiiiiie e 55
4.8.2. Optimize Library Dialogcccoviiiiiiiiiiiciie e 55

4.9. 'Backup Library' dialogc.uoeiiniiiiiici e 56
4.10. 'Error LOG' dialogovveiiiici e 56

Part I. Installation

Chapter 1. Requirements

Hardware
Qizx is designed for running on any standard computer supporting a Java™ Runtime Environment.

The memory size required is widely dependent on applications:
* Itis quite possible to perform queries even on large databases with the default memory size (64 Mb).

» Performing large transactions (tens of thousands of documents and collections or more) or handling very
large documents can require more memory.

Itis in general reasonable to allow for 128 Mb or more. In the case of a server supporting many concurrent
queries, it can be worth specifying a large memory size (e.g 512 Mb or more) to benefit from large caches
(Qizx adapts the size of caches to the available memory).

Java Virtual Machine (JVM)
Starting from version 4.0, Qizx requires a JVM version 1.5 or more.

Operating System
Qizx is supported on the following OS:

» Microsoft Windows XP, Vista and Seven.
e Linux 2.6+.
* Mac OS X 10.5+.

* In general, any OS derived from Unix, where a Sun™ Hotspot JVM version 1.5 is supported, should be
able to run Qizx. However no support can be provided for these platforms.

Additional libraries
No additional library is required.

The distribution includes the following utility jars:
* resolver.jar, the XML entity resolver for XML parsing.

* jhall_jar, the Java Help engine for Qizx Studio.

Chapter 2. Installation

Installation of Qizx/open simply consists in unpacking the zipped distribution:

1. Install on Linux

3.

. Check that the requirements of the previous chapter are met by your platform. In particular, you need a Java

Runtime Environment (JRE) version 1.5+. For example:

$ java -version

java version "1.5.0_ 11"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_11-b03)
Java HotSpot(TM) Client VM (build 1.5.0_11-b03, mixed mode, sharing)

. Unzip the gizx.zip package. This will create a qizx-VvwV directory where VWV is the version of Qizx.

For example:
$ cd /usr/share
$ unzip -1 /tmp/qizxopen-4.1.zip

$ Is gizxopen-4.1
bin config docs legal 1lib server src.zip

You can directly run the qizx or gizxstudio shell scripts from any location by giving the proper path:

$ gizxopen-4.1/bin/gizxstudio &

You may want to add the directory Q ZX_HOVE/bin to your PATH environment variable.

2. Manual install on Windows

. Check that the requirements of the previous chapter are met by your platform. In particular, you need a Java

Runtime Environment (JRE) version 1.5+. For example:

C:\Program Files> java -version

java version "1.5.0_11"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_11-b03)
Java HotSpot(TM) Client VM (build 1.5.0_11-b03, mixed mode, sharing)

. Unzip the gizx.zip package. This will create a qizx-VvwV directory where Vv is the version of Qizx.

For example:

C:\Program Files> unzip -1 \temp\gizxopen-4.1.zip
C:\Program Files> dir gizxopen-4.1

--- <DIR> bin

--- <DIR> config

... <DIR> docs

... <DIR> legal

... <DIR> Iib

... <DIR> server

... <DIR> src.zip

You can directly run the gizx.bat or gizxstudio.bat batch files from any location by giving the proper path:

C:\Program Files> gizxopen-4.1\bin\gizxstudio

. You may want to add the directory Q zX_ROOT\bin to your PATH environment variable.

Chapter 3. Content of the distribution

After installation, the following directories should be found in the installed Qizx/open directory:

docs/
Root of the documentation and samples.

index.html
Dispatches to the different parts of the documentation.

manual .pdf
Qizx manual in PDF form.

manual/
Qizx manual in browsable HTML form.

javadoc/
Java documentation of the APl and utility classes.

samples/
Examples (documents, queries, Java code, DTD and catalogs) used by the chapters "Getting started™ [6]
and "Programming with the Qizx API" [11] of the manual.

bin/
Contains executable scripts:

qizx, qizx.bat
Scripts for running the command-line tool, respectively on Unix-like platforms (Linux, Mac OS X others),
and MS Windows.

gizxstudio, gizxstudio.bat
Scripts for running the graphic interface Qizx Studio, respectively on Unix-like platforms (Linux, Mac
OS X, others), and MS Windows.

lib/
Contains the run-time jars used by Qizx:

qizx.jar
Core Qizx engine.

gizxstudio.jar, qgizxstudio_help.jar
Qizx Studio application.

resolver.jar
Apache XML Catalogs resolver for catalog-based entity resolution.

jhall _jar
Standard Java Help engine.

legal/
Contains licenses and information for Qizx/db and third-party components used in Qizx.

src.zip
Complete source code.

http://xml.apache.org/commons/

Part Il. User's Guide

Chapter 4. Getting Started with
Qizx/open

This section is a simplified version of the tutorial found in Chapter 4, Getting Sarted with Qizx/open [6].

To help experimenting and developing with XML Query, Qizx/open comes with two tools which make it easy to
write and execute XML Query scripts:

Qizx Studio [44]
A graphic tool featuring a simple XML Query workbench with which you can write and execute XML Query
scripts, and view the results.

qizx [37]
A command-line tool which can be used to execute XML Query script files.

1. Writing and running queries with Qizx Studio

Qizx Studio currently provides a basic environment for editing and running XML Query queries.

Starting Qizx Studio

» On Windows, the directory bin inside the Qizx distribution contains an executable gizxstudio.exe (or gizxstu-
dio.bat), that can be started directly by a double-click,

» On Linux or Mac OS X or other Unix, the shell script bin/qizxstudio can be started from a terminal or from a
graphical file manager.

Note that when started from a console, Qizx Studio accepts command-line arguments, for example to directly
load a XML Query script in the editor. See the reference documentation [44].

You should then see a window looking like this:

Getting Started with Qizx/open

Figure4.1. Qizx Studio first launch

B~
File Edit Tools Help

XQuery | XML Libraries |

Query editor ~g¢ BExecute Query results

1
Messages
e
Ff
Memory:[1% of 481M I
{in arrall —~ - o e [fhamasfnizvidave 1 dm
Note

In contrast with Qizx, there is only one tab in Qizx/open Studio: "XQuery" for entering and running
queries.

Let us try this query (which is the contents of the file gizxopen/queries/4_xq):

(: Find all books witten by French authors. :)

declare namespace t = "http://www.gizx.com/namespace/Tutorial™;
declare variable $authors := collection(../../book_data/Authors/*._xml"");
declare variable $books := collection("../../book data/Books/*.xml");

for $a in $authors//t:author[@nationality = "France']
for $b in $books//t:book[.//t:author = $ast:fullName]
return
$b/t:title

Note that the directory docs/samples/programming/qizxopen/queries contains the queries needed to illustrate
this lesson.

» Use the menu File — Open XQuery to load the file mentioned above.
Note that you can also save to a file a query that you have entered or edited in Qizx Studio.

There is an history that allows running again former queries, so it is not necessary to save intermediary experi-
ments.

» Then you can use the button Execute to run the query.

../samples/programming/qizxopen/queries

Getting Started with Qizx/open

| mportant

The query above uses relative paths for the collection() function. Depending how you launched
Qizx Studio, you might have to replace the relative paths by absolute paths, otherwise you will get an
error like "empty collection ../../book_data/Authors/>.xml".

After execution, we should obtain something similar to this:

Figure 4.2. Result of a query

¥ Qizx Studio 4.0: C:\workskxdb1
File Edit Tools Help

BQUEry | %ML Libraries

Resutitems 1 ... 0 4 b M g Veww

Ciery editor: 4,xg

{: Find all books wwitten by French authors. :) Y

declare namespace t = "http: /ffimmr. gizx. comfnamespace fTutorial; = -4 element {http:/ /www.qizx.comy/names
= text |Planet of the Apes|

for %a in collection("fAuthors")fft:author[Enationality = "France"]

for 5b in collection("/Books")fft:-book[.fft:author =
Saft: fullName]
return
fhit-title LTS

Messages La

1 items in 16 ms

ernory: [155 of 127Mb

* Notice that, in the picture above, the display mode of the right-side view has been changed to "Data Model",
by using the View combo-box. This makes it easier to see the Data Model structure.

The result sequence contains one item, which is a element t:title whose string value is "Planet of the
Apes".

If for example we change the value "France" to "US" in the query, then we get a sequence of 8 items.
In the same directory there are a few other queries that you can also try.

» The result items in the right-side view can be exported into a file using a button in the header. Notice that the
resulting file will not in general be a well-formed XML document.

» The Diagnostic view at bottom left contains messages, which can be simple information (execution times) or
possible execution errors.

Compilation and execution errors have generally a link to the location in the source code. By clicking the link,
the cursor moves to the location of the error in the editor view.

 For more information about the editor and the query history, please see the documentation of Qizx Studio [44].

2. Running queries with the qizx command line tool

The shell script gizx (qizx.bat on Windows) is also located in the bin/ directory in the Qizx distribution. In the
following we assume that this bin/ directory is in the PATH environment variable.

In a terminal window, type the following command (the current directory is assumed to be docs/samples/pro-
gramming/qizxopen):

Getting Started with Qizx/open

qizx queries/4.xq

Results are displayed on the console (or standard output) by default. The option -out specifies an output file.
Serialization options can be used to specify the output format.

The details of option switches can be found in the tool reference qizx(1) [37].

Part Ill. Developer's Guide

Chapter 5. Programming with the
Qizx/open API

The API in Qizx/open is much simpler than in Qizx because it has not to deal with the management of XML lib-
raries. This section is a simplified version of the tutorial found in Chapter 5, Programming with the Qizx/open
API [11].

1. Compiling and running the code samples

The code samples used to illustrate this chapter (class OpenQuery . java) are found in the docs/samples/program-
ming/qizxopen directory. Files containing XQuery scripts are found in the docs/samples/programming/qizx-
open/queries sub-directory. These scripts are almost the same as those used in the Qizx tutorial, except that access
to documents is performed through file paths instead of locations within an XML Library.

You'll need a recent version of ant, a Java-based build tool to compile and run the codes samples.

2. Creating a work session

To create a XML Query session, we need a factory, which is an instance of the class XQuerySessionManager.
This class manages documents and XML Query modules, so it is recommended to use a single instance from which
all sessions are created. The argument of the constructor is an URL used to locate XQuery modules: here it points
to the current directory, but we could also use an HTTP URL pointing to a network server.

File currentDir = new File(System.getProperty(‘'user.dir'));
XQuerySessionManager sm = new XQuerySessionManager(currentDir.toURL());

XQuerySession session = sm.createSession();

Tuning the document cache:

If you have to handle large documents or many documents in a Qizx/open application, it can be useful to tune the
size of the document cache. This cache keeps the last documents parsed, so it avoids reloading documents in dif-
ferent sessions. However the cache detects a modification on a document in a file and reloads it.

Reminder: in Qizx/open, documents are always parsed into memory before processing. The functions that load
documents are doc() [xv] and collection() [xV]. They are documented in the last section of this appendix:
Differences with Qizx database engine [xv].

Use XQuerySessionManager .setTransientDocumentCacheSize(int size) to specify a size in bytes for this
cache. You can also use the system property com.qizx.docpool .maxsize (For example you would specify
-Dcom. gizx.docpool .maxsize=100000000 on the command line).

3. Compiling and executing queries

Compiling and running a XML Query script is fairly easy:

Expression expr = session.compileExpression(script);H
ItemSequence results = expr.evaluate();H
while (results.moveToNextltem()) {H

Item result = results.getCurrentltem();

/*Do sonething with result.*/

}

First compile an XQuery expression using XQuerySession.compileExpression. The argument scri pt
contains a XQuery query expression as a string. If no compilation errors (Compi lationException) are found,
this returns an Expression object.

11

../samples/programming/qizxopen
../samples/programming/qizxopen
../samples/programming/qizxopen/queries
../samples/programming/qizxopen/queries
http://ant.apache.org/
../javadoc/com/qizx/api/XQuerySessionManager.html
../javadoc/com/qizx/api/XQuerySession.html#compileExpression(java.lang.String)
../javadoc/com/qizx/api/CompilationException.html
../javadoc/com/qizx/api/Expression.html

Programming with the Qizx/open API

Then evaluate the expression using Expression.evaluate. If no evaluation errors (EvaluationException)
are found, this returns the results of the evaluation in the form of an 1temSequence.

An 1temSequence allows to iterate over a sequence of Items (see ?2??). A Item is either an atomic value or
an XML Node.

Example (1.xq):

(: Conpute and return 2 + 3 :)
2 +3

evaluates to an 1'temSequence containing a single atomic value (5).

Example (3.xq):

(: List all books by their titles. :)
declare namespace t = "http://www.qgizx.com/namespace/Tutorial";

collection("../../book_data/Books/*.xml')//t:book/t:title
evaluates to an 1'temSequence containing several t:title element Nodes.
The openQuery class implements a simple command-line tool allowing to run queries.

Excerpts of OpenQuery . java:

private static Expression compileExpression(XQuerySession session,
String script,
QName[] varNames,
String[] varValues)
throws 10Exception, QizxException

{
Expression expr;
try {
expr = session.compileExpression(script);
catch (CompilationException e) {
Message[] messages = e.getMessages();
for (int 1 = 0; 1 < messages.length; ++i) {
error(messages[i]-toString());
}
throw e;
}
if (varNames != null) {
for (int i = 0; 1 < varNames.length; ++i) {
expr.bindVariable(varNames[i], varValues[i], /*type*/ null);H
}
}
return expr;
}

An XQuery expression can be further parametrized by the use of variables. Example (101 .xq):
(: List all books containing the value of variable $searched
intheir titles. :)
declare namespace t = "http://www.qgizx.com/namespace/Tutorial';
decl are vari abl e $searched ext ernal
collection(*"/Books')//t:book/t:title[contains(., $searched)]

Expression.bindvariable allows to give a variable its value, prior to evaluating the expression.

Some queries may return thousands of results. Therefore, displaying just a range of results (e.g from result #100
to result #199 inclusive) is a very common need.

12

../javadoc/com/qizx/api/Expression.html#evaluate()
../javadoc/com/qizx/api/EvaluationException.html
../javadoc/com/qizx/api/ItemSequence.html
../javadoc/com/qizx/api/Item.html
../javadoc/com/qizx/api/Node.html
../samples/programming/qizxopen/queries/1.xq
../samples/programming/qizxopen/queries/3.xq
../samples/programming/qizxopen/OpenQuery.java
../samples/programming/qizxopen/queries/101.xq
../javadoc/com/qizx/api/Expression.html#bindVariable(com.qizx.api.QName,%20java.lang.Object,%20com.qizx.api.ItemType)

Programming with the Qizx/open API

private static void evaluateExpression(Expression expr,
int from, int limit)
throws QizxException {
ItemSequence results = expr.evaluate();
if (from > 0) {
results.skip(from);H
}

XMLSerializer serializer = new XMLSerializer();
serializer.setlndent(2);

int count = 0;
while (results.moveToNextltem()) {
Item result = results.getCurrentltem();

System.out.print(""["" + (from+l+count) + "] ");
showResult(serializer, result);
System.out.printin();

++count;
if (count >= limit)@
break;

}
System.out.flushQ);

}

I'temSequence - skip allows to quickly skip the specified number of 1tems.
This being done, you still need to limit the number of 1tems you are going to display.

In this lesson, we'll just show how to print the string representation of an 1tem.

private static void showResult(XMLSerializer serializer,
Item result)
throws QizxException {
if (Yresult.isNode()) {H
System.out.printin(result._getString());H
return;

}
Node node = result.getNode();H

serializer.reset();
String xmlForm = serializer.serializeToString(node);H@
System.out.printin(xmlForm);

}

I'tem. isNode returns true for a Node and false for an atomic value. Similarly, 1tem.getNode returns a
Node when the 1tem actually is a Node and nul I when the I1tem is an atomic value.

I'tem.getString returns the string value of an 1tem (whether Node or atomic value). What precisely is the
string value of an 1tem is specified in the XQuery standard.

The XMLSerializer.serializeToString convenience method is used to obtain the string representation
of a Node.

3.1. Compiling and running the code of this lesson
» Compile class Query by executing ant (see bui Id.xml) in the docs/samples/programming/query/ directory.

* Run ant runl in the docs/samples/programming/qizxopen/ directory to perform this query:

(: Find all books witten by French authors. :)
declare namespace t = "http://www.qgizx.com/namespace/Tutorial';

for $a in collection(*'/Authors™)//t:author[@nationality = "France']
for $b in collection(*'/Books'")//t:book[.//t:author = $a/t:fullName]
return
$b/t:title

You can execute all the queries by running ant run_all in docs/samples/programming/qizxopen/.

13

../javadoc/com/qizx/api/ItemSequence.html#skip(int)
../javadoc/com/qizx/api/Item.html#isNode()
../javadoc/com/qizx/api/Item.html#getNode()
../javadoc/com/qizx/api/Item.html#getString()
http://www.w3.org/TR/xquery/#id-typed-value
../javadoc/com/qizx/api/util/XMLSerializer.html#serializeToString(com.qizx.api.Node)
../samples/programming/qizxopen/build.xml

Part IV. Reference

Differences with Qizx database engine
1. Java API

In Qizx/open, the following elements are absent:
* in package com.qgizx.api: all classes whose name begins with 'Library": Library, LibraryMember, etc,
* in package com.gizx.api: interface AccessControl and User, class AccessControlException,

» package com.gizx.api.util.accesscontrol .
2. Function fn:doc()

fn:doc ($path-or-URL as xs:string)
as node()

The standard doc() function of XQuery.

Parameter $pat h-or-URL: This argument can be a simple file path or any URL supported by the Java run-
time.

Returned value: a document node.

Example:

doc(*. ./book_data/Authors/iasimov.xml™)
doc(""http://www.axyana.com/qizx_tests/doc.cml'™)

3. Function fn:collection()

fn:collection ($path as xs:string)
as node()*

This is the standard collection() function of XQuery, slightly extended.
Parameter $spath: This argument is a list of documents paths, separated by commas or semicolons.

» A normal path (without wildcard characters) is treated as per the function fn:doc(). So it can either be
part of a XML Library, or be an external document (file or URL) parsed on the fly.

* If a path contains the wildcard characters * or 2, it is treated as a file pattern and expanded. Attention:
wildcard characters are currently accepted only in the file name, not in the path of the parent directory.

For example col lection(**/home/datal/*.xml ; /home/data2/*_.xml'") can be expanded, while col lec-
tion(""/homes*/* .xml ;') currently cannot be expanded (generates an error).

 All of the documents must be accessible, or an error is raised.
If the expanded sequence of documents is empty, an error is raised.
Returned value: a sequence of document nodes.

Example:

collection("../book _data/Authors/*.xml;../book data/Author blurbs/*._.xhtml'")

XV

Chapter 6. General XQuery extension
functions

These general purpose functions belong to the namespace denoted by the predefined "x:" prefix. The x: prefix
refers to namespace "com.qgizx.functions.ext".

1. Serialization

Serialization — the process of converting XML nodes into a stream of characters — is defined in the W3C spe-
cifications, however there is no standard function for performing serialization.

x:serialize can output a document or a node into XML, HTML, XHTML or plain text, to a file or to the default
output stream.

x:serialize($node as node(), $options as element(option))
as xs:string?

Description: Serializes the element and all its content into text. The output can be a file (see options below).
Parameter stree: a XML tree to be serialized to text.

Parameter $options: an element bearing options in the form of attributes: see below.

Returned value: The path of the output file if specified, otherwise the serialized result.

The options argument (which may be absent) has the form of an element of name "options" whose attributes
are used to specify different options. For example:

x:serialize($doc,
<options output="out\doc.xml"
encoding=""1S0-8859-1" indent="'yes"/>)

This mechanism is similar to XSLT's xsl:output specification and is very convenient since the options can be
computed or extracted from a XML document.

16

General XQuery extension functions

Table 6.1. Implemented serialization options

option name values description
method XML (default) XHTML, |output method
HTML, or TEXT
output / file a file path output file. If this option is not specified, the
generated text is returned as a string.
version default "1.0" version generated in the XML declaration. No
validity check.
standalone "yes" or "no". No check is performed.
encoding must be the name of an encod- | The name supplied is generated in the XML
ing supported by the JRE. declaration. If different than UTF-8, it forces
the output of the XML declaration.
indent "yes" or "no" (default "no™). |output indented.

indent-value (extension)

integer value

specifies the number of space characters used
for indentation.

omit-xml-declaration

"yes" or "no" (default "no").

controls the output of a XML declaration.

include-content-type

"yes" or "no" (default "no").

for XHTML and HTML methods, if the value
is "yes", a META element specifying the con-
tent type is added at the beginning of element
HEAD.

escape-uri-attributes

"yes" or "no" (default "yes").

for XHTML and HTML methods, escapes URI
attributes (i.e specific HTML attributes whose
value is an URI).

doctype-public

the public ID inthe DOCTYPE
declaration.

Triggers the output of the DOCTYPE declara-
tion. Must be used together with the doctype-
system option.

doctype-system

the system ID in the DOC-
TYPE declaration.

Triggers the output of the DOCTYPE declara-
tion.

auto-dtd (extension)

"yes" or "no" (default "yes").

If the node is a document node and if this
document has DTD information, then output
a DOCTYPE declaration.

* A Documentstored inan XML Library may
have properties storing this information (dtd-
system-id and dtd-public-id) initially set by
import.

 a parsed document gets DTD information
from the XML parser.

» aconstructed node has no DTD information.

2. XSL Transformation

The x:transform function invokes a XSLT style-sheet on a node and can retrieve the results of the transformation
as a tree, or let the style-sheet output the results.

This is a useful feature when one wants to transform a document (for example extracted from the XML Libraries)
or a computed fragment of XML into different output formats like HTML, XSL-FO etc.

17

General XQuery extension functions

This example generates the transformed document $doc into a file out\doc.xml:

x:transform($doc, ''ssheetl.xsl",
<parameters paraml="one'" param2="'two'/>,
<options output-file="out\doc.xml" indent="yes"/>)

The next example returns a new document tree. Suppose we have this very simple stylesheet which renames the
element "doc" into "newdoc":

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version ="1.0" >
<xsl:template match="doc">
<newdoc><xsl :apply-templates/></newdoc>
</xsl:template>
</xsl:stylesheet>

The following XQuery expression:

x:transform(<doc>text</doc>, "ssheetl.xsl', <parameters/>)

returns:

<newdoc>text</newdoc>

x:transform($source as node(),
$styl esheet-URl as xs:string,
$xslt-paraneters as element(parameters)
[, $options as element(options)])
as node()?

Transforms the source tree through a XSLT stylesheet. If no output file is explicitly specified in the options,
the function returns a new tree.

Parameter $source: a XML tree to be transformed. It does not need to be a complete document.

Parameter $styl esheet-URI: the URI of a XSLT stylesheet. Stylesheets are cached and reused for con-
secutive transformations.

Parameter $xslt-paraneters: an element holding parameter values to pass to the XSLT engine. The
parameters are specified in the form of attributes. The name of an attribute matches the name of a xsl:param
declaration in the stylesheet (namespaces can be used). The value of the attribute is passed to the XSLT
transformer.

Parameter $options: [optional argument] an element holding options in the form of attributes: see below.

Returned value: if the path of an output file is not specified in the options, the function returns a new
document tree which is the result of the transformation of the source tree. Otherwise, it returns the empty se-
quence.

18

General XQuery extension functions

Table 6.2. XSLT transform options

option name values description

output-file An absolute file path. |Output file. If this option is not specified, the
generated tree is returned by the function, other-
wise the function returns an empty sequence.

XSLT output properties (instruction These options are used by the style-sheet for
xsl:output): version, standalone, outputting the transformed document. They are
encoding, indent, omit-xml-declar- ignored if no output-file option is specified.
ation etc.

Specific options of the XSLT en- An invalid option may cause an error.

gine (Saxon or default XSLT en-

gine)

About the efficiency of the connection with XSLT

The connection with an XSLT engine uses generic JAXP interfaces, and thus must copy XML trees passed
in both directions. This is not as efficient as it could be and can even cause memory problems if the size
of processed documents is larger then a few dozen megabytes, depending on the available memory size.

3. Dynamic evaluation

The following functions allow dynamically compiling and executing XQuery expressions.

function x:eval($expressi on as xs:string)

as Xs:lany

Compiles and evaluates a simple expression provided as a string.

The expression is executed in the context of the current query: it can use global variables, functions and
namespaces of the current static context. It can also use the current item "." if defined in the evaluation context.

However there is no access to the local context (for example if x:eval is invoked inside a function, the argu-

ments or the local variables of the function are not visible.)
Parameter $sexpression: asimple expression (cannot contain prologue declarations).
Returned value: evaluated value of the expression.

Example:

declare variable $x := 1;
declare function local:fun($p as xs:integer) { $p * 2 };

let $expr := "1 + $x, local:fun(3)"
return x:eval ($expr)

This should return the sequence (2, 6).

4. Pattern-matching

The following functions match the string-value of nodes (elements and attributes) with a pattern.

Example 1: this expression returns true if the value of the attribute @lang matches the SQL-style pattern:

x:like("en%", $node/@lang)

Example 2: this expression returns true if the content of the element 'NAME' matches the pattern:

19

General XQuery extension functions

$p/NAMEL x:like("Theo%") 1]

function x:like($pattern as xs:string [, $context-nodes as node()*])
as xs:boolean

Returns true if the pattern matches the string-value of at least one node in the node sequence argument.

Parameter spattern: a SQL-style pattern: the wildcard '_' matches any single character, the wildcard '%'
matches any sequence of characters.

Parameter $scont ext - nodes: optional sequence of nodes. The function checks sequentially the string-value
of each node against the pattern. If absent, the argument defaultto'.", the current item. This makes sense inside
a predicate, like in the example 2 above.

Returned value: a boolean.

function x:ulike($pattern as xs:string [, $context-nodes as node(QQ* 1)
as xs:boolean

This function is very similar to x: like, except that the pattern has syntax a la Unix ("glob pattern™). The
character '?' is used instead of '_' (single character match), and *' instead of '%' (multi-character match).

Note: these functions — as well as the standard fn:matches function, and the full-text functions — are automat-
ically recognized by the query optimizer which uses library indexes to boost their execution whenever possible.

5. Date and Time

5.1. Differences with W3C specifications

Qizx is compliant with the W3C Recommendation. The only differences at present are extensions of the cast oper-
ation: Qizx can directly cast date, time, dateTime and durations to and from double values representing seconds,
and keeps the extended "constructors™ that build date, dateTime, etc, from numeric components like days, hours,
minutes, etc.

5.2. Cast Extensions
In order to make computations easier, Qizx can:

* Cast xdt:yearMonthDuration to numeric values: this yields the number of months. The following expression
returns 13:

xdt:yearMonthDuration(*'P1Y1M") cast as xs:integer

» Conversely, cast numeric value representing months to xdt:yearMonthDuration. The following expression
holds true:

xdt:yearMonthDuration(13) = xdt:yearMonthDuration(*'P1Y1M'")

 Cast xdt:daytimeDuration to double: this yields the number of seconds. The following expression returns
7201:

xdt:dayTimeDuration(*'PT2H1S") cast as xs:double

» Conversely, cast a numeric value representing seconds to xdt:daytimeDuration.

» Cast xs:dateTime to double. This returns the number of seconds elapsed since ““the Epoch", i.e. 1970-01-
01T00:00:00Z. If the timezone is not specified, it is considered to be UTC (GMT).

20

General XQuery extension functions

 Conversely, cast a numeric value representing seconds from the origin to a dateTime with GMT timezone.

« cast from/to the xs:date type in a similar way (like a dateTime with time equal to 00:00:00).

xdt:date(*'1970-01-02") cast as xs:double = 86400

« cast from/to the xs:time type in a similar way (seconds from 00:00:00).

xdt:time(*'01:00:00") cast as xs:double = 3600

5.3. Additional constructors

These constructors allow date, time, dateTime objects to be built from numeric components (this is quite useful
in practice).

function xs:date($year as xs:integer,
$nonth as xs:integer,
$day as xs:integer)

as xs:date

Builds a xs:date from a year, a month, and a day in integer form. The implicit timezone is used.

For example xs:date(1999, 12, 31) returns the same value as xs:date(*'1999-12-31"").

function xs:time($hour as xs:integer,
$m nute as xs:integer,
$second as xs:double)
as xs:time

Builds a xs: time from an hour, a minute as integer, and seconds as double. The implicit timezone is used.

function xs:dateTime($year as xs:integer, $nmonth as xs:integer, $day as xs:integer,
$hour as xs:integer, $nminute as xs:integer, $second as xs:double
[, $tinezone as xs:double])
as xs:dateTime

Builds a xs:dateTime from the six components that constitute date and time.

A timezone can be specified: it is expressed as a signed number of hours (ranging from -14 to 14), otherwise
the implicit timezone is used.

5.4. Additional accessors

These functions are kept for compatibility. They are slightly different than the standard functions:

« they accept several date/time and durations types for the argument (so for example we have get-minutes instead
of get-minutes-from-time, get-minutes-from-dateTime etc.),

* but they do not accept untypedAtomic (node contents): such an argument should be cast to the proper type before
being used. So the standard function might be as convenient here.

function get-seconds($nonent)
as xs:double?

Returns the "second" component from a xs:time, xs:dateTime, and xs:duration.

Can replace fn:seconds-from-dateTime, fn:seconds-from-time, fn:seconds-from-duration, except that the returned
type is double instead of decimal, and an argument of type xdt:untypedAtomic is not valid.

21

General XQuery extension functions

function get-all-seconds($duration)
as xs:double?

Returns the total number of seconds from a xs:duration. This does not take into account months and years, as
explained above.

For example get-all-seconds(xs:duration(*"P1YT1H")) returns 3600.
function get-minutes($nonent)
as xs:integer?
Returns the "minute" component from a xs:time, xs:dateTime, and xs:duration.
function get-hours($nonent)
as xs:integer?
Returns the "hour" component from a xs:time, xs:dateTime, and xs:duration.
function get-days($nonent)
as xs:integer?
Returns the "day" component from a xs:date, xs:dateTime, xs:day, xs:monthDay and xs:duration.
function get-months($nonent)
as xs:integer?

Returns the "month" component from a xs:date, xs:dateTime, xs:yearMonth, xs:month, xs:monthDay
and xs:duration.

function get-years($nonent)
as xs:integer?

Returns the "year" component from a xs:date, xs:dateTime, xs:year, xs:yearMonth and xs:duration.

function get-timezone($nonent)
as xs:duration?

Returns the "timezone™ component from any date/time type and xs:duration.

The returned value is like timezone-from-* except that the returned type is xs:duration, not xdt:dayTimeD-
uration

6. Error handling

XQuery has currently no mechanism to handle run-time errors.

Actually the language is such that an error handling is not absolutely mandatory: many errors need not be recovered
(for example type errors); the doc() function which, can generate a dynamic error, is now protected by a new
function doc-available().

However, extensions (namely the Java binding mechanism) can generate errors. It is not possible to provide a
protection auxiliary like doc-available() for every functionality.

Qizx provides a try/catch construct, which is a syntax extension. This construct has several purposes.

try { expr } catch($error) { fallback-expr }

The try/catch extended language construct first evaluates the body expr . If no error occurs, then the result of
the try/catch is the return value of this expression.

22

General XQuery extension functions

If an error occurs, the local variable $er r or receives a string value which is the error message, and f al | back-
expr is evaluated (with possible access to the error message). The resulting value of the try/catch is in this
case the value of this fallback expression. An error in the evaluation of the fallback-expression is not caught.

The type of this expression is the type that encompasses the types of both arguments.

I mportant

The body (first expression) is guaranteed to be evaluated completely before exiting the try/catch -
unless an error occurs. In other terms, lazy evaluation, which is used in most Qizx expressions, does
not apply here.

This is specially important when functions with side-effects are called in the body. If such functions
generate errors, these errors are caught by the try/catch, as one can expect. Otherwise lazy evaluation
could produce strange effects.

Example: tries to open a document, returns an element error with an attribute msg containing the error message
if the document cannot be opened.

try {
doc("'unreachable.xml')

}
catch($err) {

<error msg="{$err}"/>
}

7. Miscellaneous

function x:parse($xml-text)
as node()?

Parses a string representing an XML document and returns a node built from that parsing. This can be useful
for converting to a node a string from any origin.

Note that function x:eval could be used too (and it is more powerful, since any kind of node can be built with
it), but there are some syntax differences: for example in x:eval, the curly braces { and } have to be escaped
by duplicating them.

Parameter $xm -text: A well-formed XML document as a string.

Returned value: A node of the Data Model if the string could be correctly parsed; the empty sequence if
the argument was the empty sequence. An error is raised if there is a parsing error.

function x:in-range($value, $low-bound as item(), $high-bound as item())
as xs:boolean

function x:in-range($value, $low-bound as item(), $high-bound as item(),
$low-included as xs:boolean,
$high-included as xs:boolean)
as xs:boolean

Returns true if at least one item from the sequence $val ue belongs to the range defined by other parameters.

This function is used typically to optimize a predicate in a Library query, for example //object[x:in-
range(@weight, 1, 10)] which is equivalentto //object[@weight >= 1 and @weight <= 10].

The reason for this function is that the query optimizer is not able to detect such a double test in all situations.
The function could become useless in later versions of Qizx, after improvement of the query optimizer.

23

General XQuery extension functions

Parameter $val ue: Any sequence of items. Items must be comparable to the bounds, otherwise a type error
is raised.

Parameters$l ow bound, $hi gh- bound: Lower and upper bounds of the range. They must be of compatible
types.

Parameters $l ow-included: If $l owincluded is equal to true(), the comparison used is $low-
bound <= $value, otherwise $low-bound < $value. If absent, <= is assumed.

Parameters $hi gh-i ncl uded: If $high-included is equal to true(), the comparison used is
$value <= $high-bound, otherwise $value < $high-bound. If absent, <= is assumed.

Returned value: True if at least one item from the sequence $val ue belongs to the range defined by $I ow
bound, $hi gh- bound.

24

Chapter 7. Full-text XQuery extension
functions

Starting from version 3.0, Qizx implements the standard XQuery Full-Text from the W3C (abbreviated XQFT
hereafter).

Please see chapter ??? for more information about standard full-text support. That chapter contains a section ex-
plaining how to migrate your Qizx 2.2 applications from the former full-text functionalities.

This current chapter introduces new full-text extension functions from version 3.1:

» A simplified search function that uses a simpler and more usual query syntax than the XQuery Full-Text
standard.

Note: it is actually similar to the former full-text function (in Qizx 2.2 and before), but beware that the syntax
is somewhat different.

« Utility functionsfor highlighting full-text terms, generating summary snippets, looking up indexes and finding
spell-checking suggestions.

1. Simplified full-text search

The justification for a simplified full-text search facility is the following:

» A standard XQFT query is not an object than can be manipulated by an XQuery script. This makes it more dif-
ficult for an XQuery application to synthesize a full-text query and then execute it, unless one resorts to a dy-
namic evaluation function like Qizx x:eval() [?].

e The standard XQuery Full-Text from the W3C is not yet a completely stable specification (in July 2009, it
reached the stage of Candidate Recommendation, and it can take up to one year before it becomes a definitive
standard).

» The standard W3C full-text syntax is a bit complex and unusual, even for advanced users (those users who
would otherwise have no difficulty with a query like: title:product +"beta quality" -alpha).

1.1. Definition of the simple full-text syntax

This syntax is very simple and resembles the one found in most full-text engines. Notice that there is no notion of
Fields, since XQuery itself provides all the means of searching specific parts of XML documents.

Search Capability Examples Remarks

Simple word (without quotes) Hello Tokenized according to the language
and configuration. Note than a com-
posed word like never-ending can ac-
tually be tokenized into 2 words,
equivalent to phrase "never ending".

Wildcard ?ello Can be used in place of a simple word
inside a phrase.
ell
Phrase (single or double quotes) "Hello world" Tokenized according to the language
and configuration.
‘Hello, world!'
Phrase with proximity "hello world"~3 Same meaning as in "window 3

words” of the standard syntax:

25

http://www.w3.org/TR/xpath-full-text-10/

Full-text XQuery extension functions

Search Capability Examples Remarks

matches "hello new world", but not
"hello brand new world".

Required term +world Acts like a ftand, while plain terms act
like a ftor.
+'Hello world'
Negated term -hello Such terms must not be found in the
searched document or fragment.
-"old world"
Juxtaposition hello "brave new world" +me -you |Terms without + are ORed. Terms

with + are ANDed.

The example on the left is equivalent
to: "me™ ftand ('hello™ ftor
"brave new world') ftand ftnot
“you"

1.2. Search function
function ft:contains ($query, [$options])

function ft:contains ($query, $context, $options)

returns true if the search context matches the full-text query.
Note: this function is similar to the former ft: contains function of Qizx up to version 2.2, but beware that the
guery syntax is not quite the same.

This function is typically used as a predicate in a Path Expression. Examples:

//SPEECH[ft:contains(''+romeo +juliet™)],
//SPEECH[ft:contains(*" "to be or not to be" ', LINE, <options/>)]

Returned value: true if the context matches the query, false otherwise.
Parameter squery: A query using the simple full-text syntax.

Parameter $context (optional): A node, or sequence of nodes, inside which the full-text expression is
searched for. Note: this is the equivalent of a Field in classical full-text engines.

When cont ext parameter is not specified, the current context node "." is used implicitly like in the example
above. Note that when the function is called with 2 arguments, the last argument represents the options, not
the context.

When cont ext parameter is present, it specifies a smaller search domain (in general inside to the current
context node) . The 2nd example above finds SPEECH elements which contain at least one LINE element
which in turn contains the phrase 'to be or not to be'.

Parameter $options (optional): An element (conventionally named "options") bearing attributes:
* attribute case: value is "sensitive" or "insensitive" (using only first characters, e.g "sens", is allowed)
* attribute diacritics: value is "sensitive" or "insensitive"

« attribute language: value is a legal language name, used for tokenizing words and phrases, and stemming.
This option must precede stemming and thesaurus options if used (see below).

* attribute stemming: value is a boolean "true" or "false". Assumes that the application provides a Stemmer
implementation (see the Java APl documentation).

26

Full-text XQuery extension functions

« attribute thesaurus: value is a thesaurus URI. Assumes that the application provides a Thesaurus imple-
mentation (see the API documentation).

Example:

<options language="fr" diacritics="sensitive'/>
2. Other full-text extension functions

function ft:score ($sequence, [$length], [$start])

returns the sequence sorted by decreasing full-text score. Optionally, the result sequence can be 'sliced’ in
pages by specifying the first element and the length of a page.

The input sequence is typically a full-text search expression using either ft:contains() or the standard op-
erator 'contains text'.

The purpose of this function is to simplify the use of scoring, but also to make it more efficient than the “for
score ... order by $score descending' pattern of XQFT standard. Further versions of Qizx could enhance
this function to make it even more efficient by allowing fast heuristic scoring strategies.

When $length and $start are used, this function is an optimized equivalent of:
fn:subsequence(for $hit score $score in $sequence

order by $score descending

return $hit,

$start, $length)

Example:
ft:score(//SPEECH[ft:contains("hello +world™)], 10)
Returned value: The input sequence ordered by descending score, possibly sliced.

Parameter $sequence: A query using the simple full-text syntax (function ft:contains), or the standard
"contains text" operator.

Parameter $length (optional): Number of results to be returned. Used for slicing results. If not specified,
the value is 10.

Parameter $start (optional): rank of the first hit to be returned. Used for slicing results.

function ft:highlight ($node, $query, [$options]) as node()

Transforms an XML fragment (document or node) by replacing each occurrence of the words of a full-text
query by a XML template that contains the word. This is called highlighting because typically it can be used
with a formatting language (HTML) to render the word with some styling, using for example CSS.

Words within a ftnot clause are not highlighted.

Word occurrences are highlighted individually. For example if the query specifies a phrase, all occurrences
of the words of this phrase will be highlighted, whether they belong to an occurrence of the phrase or not.

Example:

let $doc := <P>this iIs some text searched by a query.</P>
return ft:highlight($doc, "query text", <options word-wrap="B"/>)

returns:

<P>this is some text searched by a query.</P>

27

Full-text XQuery extension functions

Returned value: A copy of the node in which all occurrences of the full-text query words are replaced by
the specified pattern.

Parameter snode: an XML fragment (document or node) to be highlighted.
Parameter squery: An expression which is either of:
e The operator contains text. Example:

ft:highlight($node, . contains text "hello world" any word)

Note: the expression must be exactly "contains text', a boolean combination is not allowed. The context
part (here '.") is ignored. Full-text options following contains text are taken into account.

* the function ft:contains(). The optional cont ext argument is ignored. Full-text options are taken into account.

ft:highlight($node, ft:contains(" “"hello world® "))

Note: in this example, although the query requires a phrase, all individual occurrences of the words 'hello’
and 'world" will be highlighted, not the phrase only.

* astring (using the simple full-text syntax). In that case it is not possible to specify options.

ft:highlight($node, *hello world™)

Parameter $options (optional): An element (conventionally named "options™) with attributes containing
the options. There are two ways of specifying how a word is "highlighted":

The first way uses a simple element bearing an attribute, similar to the SPAN element of HTML with a class
attribute:

* attribute wor d- wr ap: its value is the name of an element used to wrap the word. Default is "B".

« optional attribute wor d- st yl e: value is the name of an attribute placed on the word-wrapper element. It is
not present by default.

« optional attribute wor d- pat t er n: value is a pattern that is used to give a value to attribute wor d- styl e. If
it contains the character %, this character is replaced by the rank of the word in the query.

Example:
let $doc := <P>this is some text searched by a query.</P>
return ft:highlight($doc, "xquery +text",

<options word-wrap="SPAN" word-style="class"
word-pattern="hilite%"/>)

produces:

<P>this is some text returned by a XQuery expression.</P>

The second way uses a function called by name (XQuery cannot pass a function as a parameter of another
function):

« attribute wor d- f unct i on: value is the name of a function that is called for each occurrence of a word to
highlight. The value returned must be a Node which replaces the word.

The called function must be compatible with this signature:

function($word as xs:string, $word-rank as xs:int, $node as text()):

 $word receives a string which receives the value of the word

28

Full-text XQuery extension functions

» $word-rank is an integer which receives the rank of the word in the query.
 $node is the text node that contains the word. This allows to test arbitrarily complex conditions.

Example that highlights a word with bold if it is inside a TITLE, otherwise with a span/class:

declare function local:hilite($word, $word-rank, $node) {
if($node/parent: :TITLE)
then {$word}
else {$word}

}

let $doc := <P>this is some text searched by a query.</P>
return ft:highlight($doc, . contains text "query text" all words,
<options word-function="local:hilite"/>)

function ft:snippet ($node, $query, [$options]) as element()

Extracts a representative snippet from a document. words from a full-text query are "highlighted" in the same
way as the ft:highlight [27] function. This allows getting a result similar to the snippets produced by most
major web search engines.

A snippet is an element that contains text fragments and highlighted words.

Example:

for $doc in //SPEECH[ft:contains('hello +world™)]
return ft:snippet($doc)

Returned value: An element node containing the snippet.
Parameter $node: an XML document or node to be represented.

Parameter squery: A string (simple syntax query) or an expression using contains text, for example .
contains text "hello world"

Parameter $options (optional): An element (conventionally named "options™) with attributes.
Options similar to ft:highlight [27]:
« attribute wor d- wr ap: its value is the name of an element used to wrap the word. Default is "B".

* optional attribute wor d- st ylI e: value is the name of an attribute placed on the word-wrapper element. It is
not present by default.

« optional attribute wor d- pat t er n: value is a pattern that is used to give a value to attribute wor d- st yl e. If
it contains the character %, this character is replaced by the rank of the word in the query.

« attribute wor d- f uncti on: value is the name of a function that is called for each occurrence of a word to
highlight. The value returned must be a Node which replaces the word.

The called function must be compatible with this signature: function($word as xs:string, $word-rank as
xs:int, $node as text()):

Specific options:
« attribute sni ppet : its value is the name of an element used to wrap the snippet. Default is "shippet".
* optional attribute | engt h: the maximum number of words in the snippet. Default value is 20.

« optional attribute wor k- si ze: the maximum number of words from start examined to find the best parts of
the document. Default value is 500.

29

Full-text XQuery extension functions

function ft:word-count($word as xs:string) as Xs:integer?
returns the total count of occurrences of this word in the current XML Library.
Example:
ft:word-count(“'hamlet') (: counts occurrence of Hamlet, HAMLET etc. :)

Parameter $word: A string containing a single word. Character case and diacritics are not taken into account.

Returned value: An positive integer item, or the null sequence if the word is not found, or if not connected
to an XML Library.

function ft:word-doc-count($word as xs:string) as xs:integer?

returns the total count of documents in the current XML Library that contain at least one occurrence of this
word.

Parameter $word: A string containing a single word. Character case and diacritics are not taken into account.

Returned value: An positive integer item, or the null sequence if the word is not found.

function ft:word-lookup([$word-pattern as xs:string?]) as xs:string*

returns a list of words indexed in the current XML Library that match the pattern. If no pattern is passed, then
all the words indexed in the Library are returned.

Attention: words are sorted ignoring character case and diacritics, and the different forms in which a word
occurs are not returned. For example ft:word-lookup(''cafe') does not return a sequence like ('CAFE",
""CAFE", 'Cafe", 'Café", "cafe", 'café") even if these forms occur in the XML Library. This situation
is likely to change in later versions, which will optimize case-sensitive and diacritics-sensitive searches, but
that will require to change the representation of indexes.

Parameter $wor d-pattern: A string containing a wildcard pattern (standard syntax, case and diacritics
insensitive). If absent, then all the words indexed in the Library are listed.

Returned value: A sorted list of strings, or the null sequence if the word is not found. Sorting is done ig-
noring character case and diacritics.

function ft:suggest($word as xs:string) as xs:string*

returns a list of words that are "close to" the specified word, sorted by increasing distance. The distance used
is a simple Levenshtein algorithm, where differences in case or diacritics have a lesser weight than deletion
or insertions. The function also tries space insertion (e.g "myword" can yield "my word").

Note: this function is not a spell-checking facility, it can only return words that actually appear in a document
of the Library.

Parameter $word: A string containing a single word. Character case and diacritics are taken into account
for distance calculation.

Returned value: A string sequence containing at most 20 suggestions. Best effort is done for returning at
least one suggestion.

3. Examples

This section is a short tutorial showing how to use Qizx full-text functionalities.

30

Full-text XQuery extension functions

Query a collection of documents:

The most classical way of doing full-text queries is to look for whole documents matching a full-text expression
anywhere in their contents. For example, using standard XQuery Full-Text:

/*[. contains text "printing press"] (: uses implicit collection :)

or the same using the simplified syntax:

/*[ft:contains(" "printing press® ")] (: notice the quotes :)

The 2 examples above return a sequence of the root elements of the matching documents. If you want to retrieve
the Document objects themselves, use xlib:document():

for $doc in /*[. contains text "printing press"]
return xlib:document($doc)

"Advanced Search" a la Google™:

The Advanced Search by Google offers the possibility to search for pages that match "all these words", "this exact

wording or phrase", "one or more of these words", but not pages that have "any of these unwanted words™ (words
are specified in form fields).

This is easy to implement with XQFT and Qizx, assuming that you have the field values in 4 variables named $all,
$exact, $any, Sunwanted:
/*[. contains text

{ $all } all words ftand

{ $any } any word ftand

{ $exact } phrase ftand
ftnot { $unwanted } any word

1

Note that if all fields are empty, no error is detected but no document is returned.

Find best scoring documents:

The function ft:score is designed to make easier to finding best scoring documents and list them in pages. To display
the first 10 documents matching a query:

ft:score(/*[- contains text 'printing press™] , 10)

To display the following 10 documents by descending score, just increment a variable $start (initialized to 0) by
10 and use it as third argument of

ft:score(/*[. contains text "printing press"™] , 10, $start)

Display summary snippets of documents:

Popular web search engines display a short abstract of each document showing highlighted terms of the full-text
query. The function ft:snippet allows to do this easily in Qizx:
let $query := “printing press"
for $doc in /*[. contains text { $query }]
return ft:snippet($doc, $query)

The output of ft:snippet and ft:highlight functions can be controlled finely (see the reference documentation).

Summary: a simple "Advanced Search"

This query finds the 10 best matching documents, and for each document returns a snippet where the query terms
are in bold:

31

http://www.google.com/advanced_search

Full-text XQuery extension functions

for $doc in
ft:score(/*[. contains text
{ $all } all words ftand
{ $any } any word ftand
{ $exact } phrase ftand
ftnot { $unwanted } any word], 10)
return
<div><h4>{ xlib:document($doc) }</h4>
{ ft:snippet($doc,
. contains text { $all } all words ftand
{ $any } any word ftand
{ $exact } phrase,
<options word-wrap="b"/>)
}</div>

32

Chapter 8. Java™ Binding

The Java binding feature is a powerful extensibility mechanism which allows direct calling of Java methods bound
as XQuery functions and manipulation of wrapped Java objects.

Java Binding opens a tremendous range of possibilities since nearly all the Java APIs become accessible. The im-
plementation performs many automatic conversions, including Java arrays and some Java collections.

The Java binding mechanism is widely used in several XQuery extension modules such as XML Library handling
functions and SQL Connectivity.

Qizx Java Binding is similar to the mechanism introduced by several other XQuery or XSLT engines like XT or
Saxon: a qualified function name where the namespace URI starts with "java:" is automatically treated as a call
to a Java method.

» The namespace URI must be of the form java:ful | yQualifiedd assNarme. The designated class will be
searched for a method matching the name and arguments of the XQuery function call.

» The XQuery name of the function is modified as follows: hyphens are removed while the character following
an hyphen is upper-cased (producing ‘camelCasing'). So "get-instance" becomes "getlInstance".

In the following example the getiInstance() method of the class java.util.Calendar is called:

declare namespace cal = "java:java.util_Calendar"
cal :get-instance() (: or cal:getinstance() :)

The mechanism is actually a bit more flexible: a namespace can also refer to a package instead of a class name.
The class name is passed as a prefix of the function name, separated by a dot. For example:

declare namespace util = "java:java.util"
util:Calendar.get-instance()

The following example invokes a constructor, gets a wrapped File in variable $f, then invokes the non-static
method mkdirQ):

declare namespace file = "java:java.io.File"

let $f := file:new("'mynewdir"™)
return file:mkdir($f)

In this example we list the files of the current directory with their sizes and convert the results into XML :

declare namespace file = "java:java.io.File"”

for $f in File:listFiles(file:new('.")) (: or list-files(Q :)
return
<file name="{ $f }" size="{ file:length($f) }"/>

Security:
The use of Java Binding in a server environment is a potential security vulnerability. Therefore Java Binding
is not allowed by default in the API (applications Qizx Studio and command-line tool enable it).

Binding can be enabled on a class by class basis. To allow binding of a specific class, use the method enable-
JavaBinding in interface XQuerySession.

Static and instance methods:
A static Java method must be called with the exact number of parameters of its declaration.

A non-static method is treated like a static method with an additional first argument (‘this"). The additional
first actual argument must of course match the class of the method.

33

Java™ Binding

Constructors:
A constructor of a class is invoked by using the special function name "new". A wrapped instance of the class
is returned and can be handled in XQuery and passed to other Java functions or to user-defined XQuery
functions. For example:

declare namespace file = "java:java.io.File";
file:new("afile.txt™)

Overloading on constructors is possible in the same way as on other methods.

Wrapped Java objects
Bound Java functions can return objects of arbitrary classes which can then be passed as arguments to other
functions or stored in variables. The type of such objects is xdt:object (formerly xs:wrappedObject). It is
always possible to get the string value of such an object (invokes the Java method toString(Q)).

Type conversions:
Parameters are automatically converted from XQuery types to Java types. Conversely, the return value is
converted from Java type to a XQuery type.

Basic Java types are converted to/from corresponding XQuery basic types.

Since the XQuery language handles sequences of items, special care is given to Java arrays which are mapped
to and from XQuery sequences. In addition, a Vector, ArrayList or Enumeration returned by a Java method
is converted to a XQuery sequence (each element is converted individually to a XQuery object).

The type conversion chart below details type conversions.

Overloading
Overloaded Java methods are partially supported:

» When two Java methods differ by the number of arguments, there is no difficulty. XQuery allows functions
with the same name and different numbers of arguments.

» When two Java methods have the same name and the same number of arguments, there is no absolute
guaranty which method will be called, because XQuery is a weakly typed language, so it is not always
possible to resolve the method based on static XQuery types (Resolution at run-time would be possible but
much more complex and possibly fairly inefficient).

However, static argument types can be used to find the best matching Java method. For example, assume
you bind the following class:

class MyClass {
String myMethod(String sarg) -.-
int myMethod(double darg) ...

bs

Then you can call the mymMethod (or my-method) function in XQuery with arguments of known static type
and be sure which Java method is actually called:

declare namespace myc = "java:MyClass"
myc :my-method (1) (: second Java method is called :)
myc:my-method(*'string') (: first Java method is called :)

1. in the first call, the argument type is xs: integer for which the closest match is Java double, so the
second method is called.

2. In the second call, the argument type is xs:string which matches String perfectly, so the first method
is called.

Of course it is possible to use XQuery type declarations, or constructs like cast as or treat as to statically
specify the type of arguments:

34

Java™ Binding

declare function local:fun($s as xs:string) {
myc :my-method($s) (: First Java method is called :)
ks

or:

myc:my-method($s treat as xs:string) (: first Java method is called :)

Limitations

There are still some limitations when in both methods the argument types is any non-mappable
Java class (xdt:object in XQuery):

class MyClass {
Object myMethod2(ClassA arg) -..-
int myMethod2(ClassB arg) ...

}

In that case there is currently no way in Qizx to specify the static type of the actual argument, so the result
is unpredictable and may result in a run-time error.

Table 8.1. Types conversions

Javatype XML Query type
void (return type) empty()
String Xs:string
boolean, Boolean xs:boolean
double, Double xs:double
float, Float xs:float
java.math.BigDecimal, java.math.Biglnteger xs:decimal
long, Long xs:integer
int, Integer xs:int
short, Short xs:short
byte, Byte xs:byte
char, Character xs:integer
com.qgizx.api.Node node() ?
org.w3c.dom.Node node() ?
java.util.Date, java.util.Calendar xs:dateTime ?
other class xdt:object ?
String[] xs:string *
double[], float[] xs:double *
long[], int[], short[], byte[], char[] xs:integer *
com.qizx.api.Node[] node()*
other array xdt:object *
java.util.Enumeration, java.util.\ector, java.util. ArrayL- | xdt:object *
ist (return value only)

35

PartV. Tools

Note
This part is a copy of the documentation of the Qizx database engine product.

Operations on XML Libraries are available in Qizx/open only in client mode (see documentation of Qizx
Server in full Qizx product).

Name
gizx — Qizx command line tool

Synopsis

qizx argument...

Description

gizx is a simple command-line interface for administrative and development use.
It provides basic operations on XML libraries, in particular:

 Creating XML Libraries, and performing administrative tasks (like re-indexing, backup).

» Importing XML documents into a Library, by parsing files or URL's.

Executing XQuery expressions from files.

Outputting the results of a XQuery execution to a file, with a number of options.
» Exporting a XML document or a collection from a Library.

The command-line option switches allow all these basic operations. For more complex problems, it is still possible
to benefit of the full power of the XQuery language (and of extension functions provided by Qizx) by executing
a script.

Options

Option switches always start with a minus sign. They can be followed by an argument. The letter case is generally
significant.

An argument not starting with '-' is considered a XQuery source file to be executed.

Attention: processing of options has changed in version 4.0. The order of options is no more relevant. This makes
it simpler to use, but induces some limitations: some operations (import, backup) can be performed only once in
a launch.

General

—-group pat h, -g path
Specifies the location of a group of XML Libraries - or the address of a remote server.

e Local Library group on disk: the path points to the root directory of the Group.
» Server: the path is an HTTP URL like http://somehost:8080/qizx/api.

A default installation of a Qizx Server would end with "/gizx/api" which corresponds to the Qizx REST
API connector. But this path - of course the host and the port too - depend on the configuration of the
server. See the Server installation documentation for more details.

-librarylibrary_name, -11ibrary_nane
Specifies the name of a XML Library inside the selected group. The library must exist, unless the option
-create is used (see below), otherwise the tool will stop in error.

Most operations, like executing queries, require an XML Library.

In local group mode, the XML Library will be locked for exclusive access.

37

gizx

-login user nane: passwor d
Used when connecting to a Qizx server that requires authentication. Since the password may appear on the
command-line, this is not recommended for the best security. You may want to use the following switch -auth:

-auth secret-file
Specify login credentials read from a file for better security. If authentication is required, credentials will be
read from this file. The file should contain the following values:

login=admin
password=xxxx

Of course the file should be protected from reading by other users.
Administration operations

-Create
Using this option, the group specified with option -group is created if it does not exist, and the library specified
with option -library is created if it does not exist.

The option has no effect if both exist.

In client/server mode, only a Library can be created, this would not create a group since it is defined by the
server.

—importcol l ection XM_-file-or-directory..XM-file-or-directory
Import one or several XML documents into a collection (the collection is created if it does not yet exist):
documents are parsed (they must be valid), stored and automatically indexed.

Several XML file paths or directory paths can follow this option switch. Directories are scanned recursively,
plain files encountered are considered XML and tentatively stored (the -include and -exclude options below
can be used to filter files). A parsing error does not stop the load process.

The path of the collection can be a document pattern containing a character '*": this character is replaced by
an integer incremented on each document stored, providing an automatic naming mechanism for new documents.
For example:

qizx -g mygroup -1 mylib -import /a/collection/doc*.xml files...

would create documents /a/collection/doc1027.xml, /a/collection/doc1028.xml, /a/collec-
tion/doc1030.xml, etc. The numbers are of course guaranteed to be unique, and always increasing, but no
other assumption can be made about their values.

—-include suffix
Used together with -import: restricts the importing operation to files ending with this suffix (case insensitive).
Can be used before or after -import, but must precede the XML file list. For example -include .xml would
select only the files whose name ends with _xml or _XML or .Xml, etc.

This option can be repeated: -include .xml -include .xsd would select both files ending with .xm1 and
.xsd. By default all plain files are taken, unless a -exclude option is present (see below)

-exclude suf fix
Used together with -import: eliminates form a storing operation files ending with this suffix (case insensitive).
Can be used before or after -import, but must precede the XML file list. For example -exclude - txt would
eliminate the files whose name ends with _txt or .TXT, etc.

This option can be repeated: -exclude .jpg -exclude .png would eliminate files ending with either _jpg
or .png.

-export nmenber _pat h
Exports a member of the selected library (Collection or Document) using its path.

38

gizx

-indexing pat h
Defines an Indexing specification for the Library. An Indexing specification is used for customizing the way
XML documents are indexed in the Library. For more information, see ???.

If documents were already imported with a different indexing specification, it is strongly recommended to
use the option -reindex (see below) to rebuild indexes.

-reindex
Rebuilds all the indexes from scratch, without altering documents.

-optimize
Forces the compaction of indexes, without altering the contents of the Library.

-delete-library
Using this option, a library is specified with -Fibrary will be removed from the group and physically deleted.

-delete member_path
Deletes a member of the selected library (Collection or Document) using its path.

-backup backup group path
complete backup of the specified Library to the location specified: this location must correspond to a directory
on a file-system, where a group will be created if necessary, and in which a XML Library with the same name
will be created (if it already exists, it is first erased).

Example:
qizx -c mygroup -library mylib -backup /backups/my-group

This creates a backup group at /backups/my-group (if necessary), then copies the Library mylib into the
backup group.

-checklog file
Performs a structural check of all the Libraries of the group and report errors to the log file. This is intended
for debugging purpose.

Note

This operation is currently not able to repair a damaged XML Library.
XQuery execution and settings

-gquery-file,query-file
Executes the XQuery expression contained in that file(s). The -q option switch is optional (it has to be used
only if the file path starts with a dash, which is rarely the case). Several query files can be executed in order.
Notice that if you specify the value of XQuery variables (option -D), this applies to all scripts, whatever their
respective order.

-base-uri UR
Define the base URI for locating parsed XML documents. Unless a query redefines this base-URI, it will be
used for resolving relative document locations as in the function doc().

This option has no effect when connecting to a server.

-module-base-uri UR
Define the base URI for locating XQuery modules.

This option has no effect when connecting to a server.

-icollection
Defines the ““Implicit Collection" i.e the set of documents or Nodes used as search roots when a XQuery Path
Expression has no explicit root.

39

gizx

For example the expression //ELEM has no explicit root, while collection(**/mycollec’)//ELEM has the
explicit root collection(**/mycol lec'), a Collection of the current XML Library.

Using thisoption is quite useful, asit allowswriting XQuery scripts which are independent on the actual data
used as input. Furthermore it makes scripts more concise.

If the Implicit Collection is defined through this option, for example -i /mycollec, the expression //ELEM
is equivalent to col lection(*'/mycollec')//ELEM.

Values: acceptable values for this option are the same as the argument of function fn:collection (for Qizx/open,
see here [xv]):

« the path of a Document or a Collection inside an XML Library ,
« afile path or an URL.: for example dirl/doci.xml Or http://foobar.com/docs/summary.xml
« afile pattern: dir/>_xml

 asemicolon-separated list of the above elements: dir1/*.xml;dir2/doc2.xsl

Note

If you want to use a single document, append a comma or semicolon after its path or URL.

Note

The function collection() without argument, or the deprecated XQuery function input() can also
be used instead of an implicit root.

-domain col | ection
Alias for option -i above.

-Dvari abl e_nane=val ue
Defines the value of a global variable. For example if the variable is declared like this:

declare variable $output external;

then the option -Doutput=Foo initializes $output with the string value "foo".

If the variable is declared with a type, an attempt to cast the string value to the declared type is made.
If the variable is declared with an initial value, this value is overridden.

-—argunent ... ar gunent
The double dash switch is used to pass command-line arguments to a XQuery script. It stores all following
command-line tokens into the predefined variable $arguments. For example:

qizx myscript.xq -- argl arg2 arg3

runs the script myscript.xq after putting the sequence of 3 string items ("arg1”, "arg2", "arg3") into variable
$arguments.

Note
Because of this option, the scripts are always executed after interpretation of all other options.

-timezone dur ati on
Defines the implicit timezone in the dynamic XQuery context. The value must be in xs:duration form, for
example -timezone -PTSH.

This option has no effect when connecting to a server.

40

gizx

-collationuri

Defines the default collation for string comparisons.

Collations are supported through Java collators based on a locale name, for example "en" or "fr-cH". There
is currently no support for plugging user-defined collators.

Syntax of the URI of a collation:

 Leading slash (so that the URI is absolute, otherwise it would be dereferenced relatively to the base-uri
property of the static context).

» Name of a locale following the Java conventions.

» Anoptional URI fragment (beginning with a '#') whose value is "primary", "secondary" or "tertiary", defining
the "strength™ of the collator (see the Java documentation for more details). The value "primary" is less
specific than "tertiary".

If the strength is absent, it is in general equivalent to "tertiary".

For example, the expression contains(**The next café", “CAFE"™, “en#primary') should return true,
because the collation with strength primary ignores case and accents.

The special URIS codepoint and "http://www.w3.0org/2003/05/xpath-functions/col lation/codepoint”
refer to the basic Unicode codepoint matching (or absence of collation). This is the default collation, unless
redefined in the static context.

Output options

-Xopt i on=val ue

Defines a serialization option for result output. For example -Xmethod=html produces results in HTML
markup.

For details of serialization options, see the documentation of the x:serialize() XQuery extension function.

-outfile

output the result of a XQuery expression to a file (defaults to standard output).

-wrap

_jt

wraps the displayed results in description tags. For example with -wrap the expression 1, "a" would display:

Query ? 1, "a"
<?xml version="1.0" encoding="UTF-8"7?>
<query-results>
<item type="xs:integer'>1</item>
<item type="'xs:string'>a</item>
</query-results>

instead of:
Query ? 1, "a"
1a

-> 2 item(s)

trace use of Java extension functions (for debugging).

This option has no effect when connecting to a server.

-tex

verbose display of run-time exceptions (for debugging).

41

http://java.sun.com/j2se/1.4.2/docs/api/java/text/Collator.html

gizx

Note

In Qizx/open, only the query execution options and output options are available

Examples

This section is an How-To for some common operations with the gizx command line tool:
Create a group with a single XML Library
qizx -group D:\xmldb\groupl -library orders -create

This creates a group in the directory D:\xmldb\groupl (which must be non-existent or empty), containing a
single XML Library named ‘orders'.

Create an empty group

qizx -group D:\xmldb\groupl -create
This creates a group in the directory D:\xmldb\group1, without any XML Library inside.

Connect to a server

qizx -login me:mypassword -group http://localhost:8080/qizx/api script.xq

This connects to a Qizx server and executes the script on this server. Most other commands and options can
be used in this mode.

Authentication, if required, can be provided by option -login, or by -auth (use of a secret file), or would be
read on the console.

Import XML documents into an existing XML Library

qizx -group D:\xmldb\groupl -library orders -import /2007/june c:\data\orders\june2007*.xml

This assumes that the group at D=\xmldb\group1 already exists and contains a Library named 'orders'. Then
the specified XML documents are stored into the Collection /72007/june. For example the document
c:\data\orders\june2007\A_xml will be stored in the library at /2007/june/A_xml.

Create a group with a single XML Library and store XML documents

qizx -group D:\xmldb\groupl -library orders -create -import /72007/june c:\data\orders\june2007*.xml

This is a combination of the previous commands: the group and library are created and immediately after the
documents are stored into the Library 'orders'.

Import XML documents into an existing XML Library with filters

qizx -group D:\xmldb\groupl -library data -import /72007/june -include .xml -include .xsl \
c:\data\orders\june2007

Assuming that the group at D:\xmldb\group1 already exists and contains a Library named 'orders', then all
XML documents contained within directory c:\data\orders\june2007 (at any depth), and whose name
ends with .xml or _xsl are stored into the Collection /2007/june.

qizx -group D:\xmldb\groupl -library data -import /72007/june -exclude .jpg \
c:\data\orders\june2007

Assuming that the group at D:\xmldb\group1 already exists and contains a Library named 'orders', then all
XML documents contained within directory c:\data\orders\june2007 (at any depth), and whose name
does not end with . jpg are stored into the Collection /2007/june.

42

gizx

Delete an XML Library within a group

qizx -group D:\xmldb\groupl -library datalLib -delete-library

Deletes the library 'dataLib' (selected by -library datalLib) and all its contents. Beware, this operation is
irreversible.

Delete a Document or a Collection within a Library
qizx -group D:\xmldb\groupl -library datalLib -delete /2007/june

Deletes the collection /72007/june in library 'dataLib' and all its contents (documents and sub-collections).
Beware, this operation is irreversible.

qizx -group D:\xmldb\groupl -library dataLib -delete /2007/june/orderl._xml

Deletes the document /2007/june/order1.xml in library 'dataLib'. Beware, this operation is irreversible.

43

Qizx Studio Help

XF, XMLmind <qizx-support@mlimind.com>
Version 4.0
Copyright © 2007-2010 Axyana Software
May 10, 2010

Abstract

Online help of Qizx Studio, a graphic user interface for Qizx.
Qizx Studio is a graphic user interface built on top of the API provided by the Qizx XML indexing and query engine.
Qizx Studio has several purposes:

« Offer an interactive tool to edit, execute and debug XQuery queries (there is no debugger yet, but that is planned
for a future version such as 4.1 or 4.2).

* Offer an easy-to-use interface for administering XML Libraries.

» Demonstrate most of Qizx functionalities through menus and dialogs.

This documentation assumes that you have at least basic notions about XQuery and Qizx (XML Library, Collection,
Document).

1. Starting Qizx Studio

Qizx Studio can be started:
» From a graphic environment

» From the command line: it supports a few option switches similar to the command-line too gizx. Here are the
main ones:

—-group pat h, -g pat h
Specifies the location of a group of XML Libraries - or the address of a remote server.

e Local Library group on disk: the path points to the root directory of the Group.
e Server: the path isan HTTP URL like http://somehost:8080/qizx/api.

A default installation of a Qizx Server would end with "/gizx/api" which corresponds to the Qizx REST
API connector. But this path - of course the host and the port too - depend on the configuration of the
server. See the Server installation documentation for more details.

-login user nane: password
Used when connecting to a Qizx server that requires authentication. Since the password may appear on the
command-line, this is not recommended for the best security. You may want to use the following switch -
auth:

-auth secret-file
Specify login credentials read from a file for better security. If authentication is required, credentials will
be read from this file. The file should contain the following values:

login=admin
password=xxxx

Of course the file should be protected from reading by other users.

44

Qizx Studio Help

2.The XML Libraries' tab

This tab is used to manage XML Libraries: creation, browsing, maintenance.

Note

In Qizx/open, this tab is absent.

It is divided in three views:

1. Library Browser (left side): a tree view to browse XML Libraries and contained Collections
2. Metadata Properties view (top right): displays the properties of a selected Document or Collection
3. Contents of Document view (bottom right): displays the contents of a selected XML Document.

Figurel. XML Librariestab

BoO== Qizx Studio 4.0: /iwork/dbAestxdb v & X
File Edit Tools Help
XQuery | XML Libraries
- 5? Properties of Document fhamlet.xml YView «
W XML Libbrary Grougp at [¢ . /
) . . did-name [string] = PLAY -
¥ :g :?(ML library "plays dtd-system-id [string] = play.dtd]
e ﬂs J element- count [integer] = 6636
a_and_c.xml import-date [dateTime] = 2010-03-12T21:13:22.3627 i
= nature [string] = document
all el sernl path [string] = fhamlet.xml | 8§
as_you.xm : pi- count [integer] = 0 |
COm_err. xml = <ize lintener]l = 237248 o
I:I:If'il:l|.'a_r'|_}{r'|"|| e ————
cyrnbelin kel :| Contents of Document fhamletxml B |‘-.Fiew v|
drearn. xml =?xml version="1.01" > =
hamlet. xml 7 <PLAY=]
hen v 1 sl <TITLE=The Tragedy of Hamlet, Prince of Denmark=/TITLE=
= -t - <FM:=
hen_iv_2.xm| <P=ASCII text placed in the public domain by Moby Lexicda=
hen_w.xml =P=SGML markup by Jon Bosak, 1992-1994, < /P=
hen_wi_1.xml < P=XML version by Jon Eosak, 1996-1999, < /P
hen wi 2 xml | | < P=The XML markup in this version is Copyright © 1999 |
= . < FM =
hen_vl_3.xmi 9 <PERSONAE>
hen_mn.}{ml <TITLE>Dramatis Personae=/TITLE>
jcaesar xml < PERSOMNA=CLAUDIUS, King of Denmark. < /PERSOMA =
john.xml < PERSOMNA =HAMLET, son to the late, and nephew to the p
lear sl < PERSOMA=POLONIUS, lord chamberlain. = /PERSONA >
sl < PERSOMNA=HORATIO, friend to Hamlet. = /PERSOMNA =
= ’ < PERSOMNA=LAERTES, son to Polonius. = /PERSOMNA =
r_for_m. sl <PERSONA>LUCIANUS, nephew to the king.</PERSONA>
r _weives. kil ¢ <PGROUP=
rmacheth. xml | — < PERSONA=YOLTIMAND < / PERSOMA =

-

g PERS WA - CORMELIIS - P PERSOIM A
i Kl [| [»]
Memory: [T @iof 481Mb | |
=AML YEFSION E'.‘," ID" EHSHE IggE—Igg!}l.*{fl'}' TN T 1=l '.-I-—I—-I

45

Qizx Studio Help

2.1. Library browser

This view displays the contents of a XML Library Group as a tree.

The view displays the following objects:

XML Library Group M : the currently opened group of Libraries.

-

i
XML Library £ : a library belonging to the group

° i
Collection : a Collection inside a Library. May contain other collections.

Document E: a well-formed XML document stored and indexed in a Collection.

Each kind of object has an associated right-click menu, which gives access to a number of operations:

o XML Library Group right-click menu:

L]

Open Library Group: opens a group of XML Libraries located in a directory. A file chooser appears to select
that directory.

In this mode, Qizx Studio has exclusive access to the XML Libraries. If another application or server already
has locked the Libraries, an error panel will appear.

This command also allows opening a single XML Library by selecting its root directory: It is a special case
where the Library Group has no defined location, and therefore creating other libraries is not possible.

Connect to Server: opens a client connection to a Qizx Server.

This will likely present an authentication dialog asking for a user name and a password (depending on the
configuration of the server).

Close Library Group: closes the current group of Libraries. If currently connected to

Passes in a mode where no Library is available. Note that it is still possible to run XQuery expressions, as
long as they don't perform queries on a Library. This is equivalent to using Qizx/open.

Create Library Group: creates a group of Libraries in a directory. This directory is first selected by a file
chooser. It must be empty or non-existent. The Library Group is created in the directory, then a dialog asks
for the name of the first Library to be created inside the group.

CreateLibrary: allows creating more XML Libraries inside the current group.

e XML Library right-click menu:

Import Documents: to store XML documents into the selected Library (in the root Collection); see the Import
Documents dialog [53].

Use Library as Query domain: query domain means the default root of a XQuery/XPath path expression.
For example, assume that you have a Library containing the plays of Shakespeare (as marked up by Jon Bosak),
that you select the Library as the query domain, then the query //SCeENE will return all SCENE elements in the
Library. Note the particular query //SCENE has no explicit root or start-point. It uses here the default query
domain.

This feature is not supported in client-server mode (because it does not make much sense).

46

Qizx Studio Help

Indexing: a sub-menu that deals with indexing specifications.
* Indexing Specification: load a new specification written in XML. See details here [55].
» Rebuild all indexes: this operation is normally required after changing the indexing specifications.

« Optimize Library: this a compaction operation that can slightly improve the performance of queries on
the Library. It is normally performed automatically after a certain number of transactions.

Backup Library: this command makes a backup copy of a Library to an external directory.
Delete Library: this command physically destroys the selected Library.
Refresh: useful in client mode to see the latest state of the Library: another client may have modified it.

Notice there is currently no notification mechanism that would allow an automatic refresh on update of an
XML Library.

» Collection right-click menu:

UseasQuery domain: query domain means the default root of a XQuery/XPath path expression (See here [46]
for more details). If a Collection is used as query domain, the query is restricted to all documents contained
within the Collection at any level.

Import Documents: command used to store XML documents into the Collection. Invokes the Import Docu-
ments dialog [53].

Create Sub-Collection: asks for the name of a Collection which will be child of the selected collection..

Copy Collection: this command allows copying the selected Collection and all its contents (sub-collections
and documents) to another location in the same Library.

Rename Callection: this command allows changing the name or the location of the collection.

Delete Collection: this command destroys the selected Collection and all its contents (sub-collections and
documents).

Refresh: useful in client mode to see the latest state of the Collection: another client may have modified it.

» Document right-click menu:

Use as Query domain: query domain means the default root of a XQuery/XPath path expression (See
here [46] for more details). If a Document is used as query domain, the query is restricted to this particular
document. For example if the query domain is the document /col 1/doc1 . xml, the query //TITLE is equivalent
to doc(*"/coll/docl.xml')//TITLE.

Export Document: command used to extract the XML contents of the document into a local file. Invokes
the Export Document dialog [55] which allows choosing serialization options.

Copy Document: this command allows copying the selected Document to another location in the same Library.
Rename Document: this command allows changing the name or the location of the document.
Delete Document: this command destroys the selected Document.

Refresh: useful in client mode to see the latest state of the document: another client may have modified it.

2.2. Metadata Properties view

This view displays the properties (also called metadata) of the currently selected Library member, i.e Document
or Collection.

47

Qizx Studio Help

The name (in blue) and the value of the property are displayed.
Modifying properties
By right-clicking on a property, its value and type can be edited.

Note: though the 'path’ property can be edited, it is in fact built-in and will not change. It can be changed through
the 'Rename’ operation, by right-clicking on the corresponding Collection or Document.

2.3. Document display
This view displays the XML contents of a selected document. It should be empty if no document is selected.

2.3.1. Export document to file

With the button "5, you can save the document to a file. This invokes the Document Export Dialog [55].
2.3.2.View mode

This drop-down selector selects one of two display modes for a XML Data Model (i.e the contents of a document):
» Markup: this is a XML-like display

» Data Model: shows each individual node constituting the data model.

3. The 'XQuery' tab

This tab is used to edit and execute XQuery queries.

It is divided in three views:

1. Query editor (top left): a text editor with execution button and query history.
2. Messages view (bottom left): displays compilation and execution messages.

3. Query Results (right): displays the items of the result sequence.

48

Qizx Studio Help

Figure 2. XQuery tab

Bo = = Qizx Studio 4.0: ‘work/db/ftestxdb
File Edit Tools Help
XQuery | XML Libraries

Query editor: * 5 Execute| || | Result items 1 to 42 of 42
//SPEECH[. contains text "romeo juliet” all words] | i § <SPEECH=
: <SPEAKER =ROMEQ < /SPEAKER =
¢ <LINE=

=<STAGEDIR=To JULIET= /STAL
IT | profane with my unmworth
= fLIME =
< LIME=This holy shrine, the gent
< LIMNE =My lips, twio hlushing pilg
<LIME=To smooth that rough tou
< (SPEECH =
<SPEECH =
<SPEECH =
<SPEECH =
<SPEECH =
<SPEECH =
<SPEECH =
<SPEECH =
<SPEECH =
<SPEECH =
<SPEECH =
<SPEECH =
<SPEECH =

<SPEECH =
CPEEH

Messages [

current Library: plays
42 items in 6 ms

—r T YTYYYTYYYYYIYYY

il

Memory:[0% of 481Mb |
— . — T Y |

3.1. XQuery Editor

This area is a basic text editor of XQuery source code, performing syntax coloring.

A file can be loaded in the editor through the menu File — Open XQuery, and conversely the source code can be
saved with menu File — Save XQuery.

Caution

No check is performed when saving or when exiting the application, however the query history (see below)
keeps trace of all queries entered.

Specifying the path of a XQuery source file in the command-line of Qizx Studio will automatically load the file.
This happens if the file extension (in principle . xq) has been associated with the Qizx Studio application, depending
on the Operating System used.

The editor has several buttons and controls in the tool-bar above:

49

Qizx Studio Help

3.1.1. Query Execution

The button “& Execute compiles the current query and evaluates it. During execution the button changes to “&
Stop.

The result sequence is displayed in the Result View. A message in the Message View below tells the number of
items in the result sequence, and the time in milliseconds taken by the evaluation.

3.1.2. Stopping Query execution

A lengthy evaluation can be canceled with the button Stop <. No results are displayed.
3.1.3. Clear editor text

The button [clears the editor, to type a new expression.

3.2. Result View

This view displays the result sequence produced by the evaluation of a XQuery expression.

» Simple items (integer, string, etc) are displayed with their type.
» Node items are displayed either in "markup" style, looking like XML.

Results are displayed by pages of 100 items. A set of buttons 4 I can be used to traverse the result sequence if
itis long.

Figure 3. XQuery tab with miscellaneous results

BoO== Qizx Studio 4.0: /'work/dbiestxdb - &
File Edit Tools Help
XQuery | XML Libraries |

Query editor: * . Execute| |[_J| i|Result items 1 to 7 of 7 | | vie
true{), 1, 2e-1, 3.0, "a string", | — ® xs:boolean = true
comment { "this is a comment™ }, : @ xsiinteger = 1
element X { "text™, <empty /= } : @ xs:double = 0.2
: @ xs:decimal = 3
® xs:string = a string
=1--this is a comment-- >
T <N =text
<empiyy =
S =

Messages B
retrieval time 2 ms =
retrieval time 2 ms]
retrieval time 2 ms
¥ items in 9 ms
¥ items in 1 ms =
g items in 1 ms
7items in 1 ms | 9

-

Memory: [8% of 481Mb__|
B FTTcal #%: atk dican infa load ican: assertion “dican infa 1= MU' failed

50

Qizx Studio Help

3.2.1. Move forward and backward in result sequence

The two vertical arrows move the position of the displayed page by 100 items forward or backward.
3.2.2. Export result sequence to a file

This button [saves the whole result sequence onto a file.

Note that the resulting file will not in general represent a well-formed XML document, unless the result sequence
contains a single Node. A message signals when the result is not well-formed.

The invoked dialog allows choosing serialization options. Some of these options (HTML) do not always make
sense, depending on the actual results.

Figure 4. Export resultsdialog

E ':J - o il A Phe Moo o J0 AT TR F% TRF el il By Y 'y o

BoO== Export results to file L)

File Edit

Caution: saved output will not be well-Tformed XL —
View «

Query edito

declare full Qutput file:

{ |Ihnme;xaﬂer,fresult5.html | | Browse...
$a +1

b

Encoding: [UTF-8 b

Tocal :sim|

Method: |HTML |

oo | QML XML Declaration: [
Messages

1items in 1 Indent []

Indentation: E

.2l Ok Cancel

Me mory: 2

I =l 1 [

3.2.3. Change the display style of results
This command changes the display style for Nodes only.
» The Markup style mimics XML markup.

e The Data Model style is a tree view of Node structures.

3.3. Message View

This view displays compilation and execution messages.

51

Qizx Studio Help

When an error is displayed, the location is underlined: by clicking on it, the cursor of the Query Editor is placed
on the error location.

4. Dialogs

Note
In Qizx/open, only the XML Catalogs and Error Log dialogs are available.
4.1. Open local Library Group dialog
Used for opening an XML Library group located on a local disk.
* File browser: selects a directory on a local file-system.
 History of recently opened groups: double clicking on this list selects the clicked entry.
4.2. Connect to Server dialog

Used for opening an XML Library group managed by a remote server.

Figure 5. Connect to Server dialog

&> () (&) (¥) Connectto Server) =)

-

Select the address of a Qizx server

Qizx Server:
|http:,f,flcn:alhnzt:BOBOMizMapi |

Recent Servers:

|http:/ / localhost:8080; gizx/ api |
http://192.168.0.3: 8080/ qizx/ api

L2 Ok Cancel

* Field text for the URL of the server:
this URL is of the form http://host: port/webapp/api, where host, port and webapp depend on the installation.

The path 'gizx/api' is the default for the REST API of Qizx, but it can be changed in the configuration of the
server.

« History of recently opened groups: double clicking on this list selects the clicked entry.
Authentication

Generally, a server will require a login and password on connection. This is configured in the installation of the
server.

52

Qizx Studio Help

Figure 6. Connect to Server authentication dialog

Bo= - Qizx Studio 4.0 v A x

g
File Edit Tools Help

[XQuery [XML Libraries | ¥
= : Metadata View ¥ ([t
W (Mo XML Likraries] : ,
- i
BO== Login v A x ik
User authentication: b/
| £
B
Qizx Server from 192.168.0.37 1=
it
Login: |admin | | %

Password: " |

L1 OK Cancel |

Memory:[_ 1% 0f 481Mb |

4.3. 'XML Catalogs' dialog

A dialog used to define XML Catalogs used when documents are imported.

Qizx supports the OASIS XML Catalogs specifications.

]

The dialog edits the value of the system property "xml .catalog. files" which can contain a semicolon-separated

list of catalog files.

It is possible to add file paths and URLS to the list.

4.4. 'Create Collection’ dialog

This dialog allows creating a child Collection of the selected Collection.

It simply prompts for the name of a child collection. This name must not contain the slash /' character.

4.5. 'Import Documents' dialog

This dialog allows parsing, storing and indexing one or several XML documents into a Collection inside a XML

Library.

53

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

Qizx Studio Help

Figure7. Import dialog

Blol=T- rort Docu : va x

Import into plays, collection |

Select XML files or directories with the box below,
then use the "Start Import” button.

Add File/Folder... Remove Clear all Filter: [*.xmil -
file or directory #files total size filter
fhome/xmlfzhake 27 FEQTTOI " oEml

Import Options
[]Strip Whitespace

Cancel
[| Jhomefamlishake, hen_wi 2 xml
253737 files 0 seconds remaining

Messages —
——— Starting import of 27 documentis) ---

L2 Close
- = \J

An import operation is performed in two steps:

1. Create an import list of XML files or of directories. This list displays the path, the number of files (for directories),
the total size in bytes, the filter used (for directories).
2. Push the button "Start Import".

To Add afile or directory (or several) to the list, use the button "Add File/Folder" and select the file(s) or directory.

For directories, you may first want to choose a filter for contained files. a new filter can be typed in the combo-
box.

Items can be removed from the list by selecting them and using the button Remove, or the button "Clear all".

54

Qizx Studio Help

DTD and Schema are resolved through XML catalogs. The XML Catalogs menu [53] allows editing the catalogs.

Parsing errors are reported in the Messages area at bottom.

4.6. 'Export Document' dialog

This dialog is used for extracting a selected Document from a Library and write its contents back to a file.
The dialog allows choosing the file and Serialization options.

It is also used for exporting the results of a XQuery evaluation.

4.7. Metadata Property Editor dialog

This dialog allows adding a new property or editing an existing property. It is invoked by right-clicking on the
name of a property.

The value is edited in string form. The type selected with the Type combo-box is then used to parse the value ac-
cordingly.

Possible types are currently:

o String.

* long integer (xs:integer).

* double (xs:double).

» Date (java.util.Date) : a value is edited in ISO standard form, for example 2010-05-01T14:54 .

* boolean (xs:boolean).

» node(): a single node (generally an element).
* expression: any executable XQuery expression can be entered. Only the first item will stored as property value.

4.8. 'Change Indexing Specification' dialog

This dialog allows defining and changing the Indexing Specifications. See ??? for more information about Indexing
Specifications.

There are three ways of modifying the Indexing Specifications:

« Directly edit basic specifications using the simple editor presented in the dialog. This editor allows editing the
most common indexing properties, but is too limited to handle all the Indexing capabilities.

« Load a specification file (XML format described in the documentation), using the button Load From File...
» Reset Indexing specifications to the default value (button "Restore To Default").

After any change (when using the button Apply), the user is suggested to rebuild the indexes entirely. This is
strongly recommended for avoidance of inconsistencies in query results.

4.8.1. Reindexing Dialog

This is a simple dialog through which the indexes can be rebuilt entirely, using the current Indexing Specifications.
It is invoked automatically after a change in the Indexing Specification Dialog.

Please note that since Qizx 2.1, re-indexing is a synchronous operation. A progress bar is displayed by the dialog.
4.8.2. Optimize Library Dialog

This is a simple dialog through which the XML Library can be put into an "optimal™ state. This operation involves
compacting the document storage and the indexes, if necessary.

55

Qizx Studio Help

Please note that since Qizx 2.1, optimizing a Library is a synchronous operation. A progress bar is displayed by
the dialog.

4.9. 'Backup Library' dialog

This dialog prompts you for a directory in the file system where the Library will be saved. The directory contents
will be erased before backup.

This is a “"hot backup" which saves a snapshot of the database: any modification made by another connection
during the backup will be ignored. This is meaningful and useful in a multi-user environment, like a Web Applic-
ation running in a servlet container.

The Restore operation consists simply of moving or copying the directory of the backup Library to the place of
the original Library (see Administrator section of the manual for details).

Figure 8. Backup dialog

BoO== Library Backup - . x

¢ Select a directory where the Library will be saved.
The directory's contents will first be erased.

it fbackupl | | Browse...

) Close]
[0

4.10. 'Error Log' dialog
This non-modal dialog appears when a serious error is detected by the Library manager.

Typically it appears if you try to use a XML Library that is already locked by another instance of the Qizx engine
(an instance of Qizx Studio, of the gizx command-line tool, or one of your applications).

56

