
Qizx Programmer's Guide

Table of Contents
1. Extension functions ... 1
2. Date, Time, Duration functions .. 4
3. Java binding .. 6
4. Java API ... 7

Qizx is basically a class library implementing a XQuery engine embeddable in different kinds of applications. It
has therefore a Java API which allows to compile and execute queries, define execution environments, serialize
the results or pass them to a SAX output. The API also provides access to the Data Model, allowing to manipulate
Nodes that constitute XML documents. This API is presented in Section 4 (Java API[1]) ; see also the Javadoc[2].

For XQuery programming, Qizx provides different kinds of extensions:

XQuery functions
Additional predefined functions. They belong to a private namespace "qizx.extensions" referenced by the x:
or qizx: prefixes.

They implement in particular serialization, error handling, text searching and highlighting.

Extensions to standard XQuery functions
Some standard functions (manipulation of date, time, duration) have been extended or modified to become
more powerful or more convenient.

Binding Java methods as supplementary functions
This mechanism (similar to those found in other XSLT and XQuery engines, for example Saxon) provides an
easy way to extend XQuery by binding methods of any Java class, making this methods appear as XQuery
functions. Arguments and results are automatically converted if possible (number, string, boolean) or can be
manipulated as opaque wrapped objects with type xdt:object. Qizx also converts Java arrays, vectors and
enumerations to XQuery sequences and conversely.

Web applications
This extension uses XQuery as a powerful and convenient Web page template language: the results of an ex-
pression evaluation are serialized to the HTTP output stream, or alternately can be piped to a XSLT transform-
ation. The whole Java Servlet API is available through the Java extension mechanism mentioned above, or
through convenience functions. This feature is described in a separate document: XML Query Server Pages[3].

1. Extension functions
These functions belong to the namespace "qizx.extensions" for which the prefixes x: and qizx: are predefined.

x:serialize($tree as element(), $options as element(option)) as xs:string?
Serializes the tree element into marked-up text. The value returned is the path of the output file, or the empty
sequence if the default output is used.

[1] #javapi
[2] javadoc/index.html
[3] doc_xqsp.html

1

#javapi
javadoc/index.html
doc_xqsp.html

The options argument (which may be absent) has the form of a element of name "options" whose attributes
are used to specify different options. For example:

x:serialize($doc,
 <options output="out\doc.xml" encoding="ISO-8859-1" indent="yes"/>)

This mechanism reminds XSLT's xsl:output specification and is very convenient since the options can be
computed or extracted from a XML document.

Table 1. Implemented options

descriptionvaluesoption name

output methodXML (default) XHTML, HTML, or
TEXT

method

output file. If this option is not spe-
cified, the generated text is written
to default output, which can be spe-
cified through the Java control API.

a file pathoutput / file

version generated in the XML de-
claration. No validity check.

default "1.0"version

No check is performed."yes" or "no".standalone

The name supplied is generated in
the XML declaration. If different
than UTF-8, it forces the output of
the XML declaration.

must be the name of an encoding
supported by the JRE.

encoding

output indented."yes" or "no". (default no)indent

(extension) specifies the number of
space characters used for indenta-
tion.

integer valueindent-value

controls the output of a XML declar-
ation.

"yes" or "no". (default no)omit-xml-declaration

for XHTML and HTML methods,
if the value is "yes", a META ele-
ment specifying the content type is
added at the beginning of element
HEAD.

"yes" or "no". (default no)include-content-type

for XHTML and HTML methods,
escapes URI attributes.

"yes" or "no".escape-uri-attributes

Triggers the output of the DOC-
TYPE declaration.

the public ID in the DOCTYPE de-
claration.

doctype-public

Triggers the output of the DOC-
TYPE declaration.

the system ID in the DOCTYPE
declaration.

doctype-system

x:catch-error($expression, $fallback)
There is currently no mechanism in XQuery to handle errors. Most errors must not be recovered (for example
type errors), however a problem arises for example with the function doc which loads a document: if the
document is not found or has parsing errors, the desired behavior is generally not that the whole execution
fails with a fatal error.

This function catches a possible error in the evaluation of the first argument. If no error occurs, the value of
the first argument is returned, else the second argument is evaluated and its value returned. An error in the
evaluation of the second argument is not caught.

Qizx Programmer's Guide

2

The type of the function is the type that encompasses the types of both arguments.

Remark: a better mechanism is desirable in order to retrieve the cause of the error.

x:system-property($name as xs:string) as item()?
Returns the value of a "system" or application property. Similar to the function with same name in XSLT.

Additional properties can be defined through the Java API.

x:words($query as xs:string [, $context-nodes as node()*]) as xs:boolean
This function (also named x:fulltext) implements context-sensitive full-text search: it can search boolean
combinations of words, word patterns and phrases. It is typically used inside a predicate. For example the
following expression returns SPEECH elements which contain both words "romeo" and "juliet":

//SPEECH [x:words(" romeo AND juliet ")]

Caution: in the open-source version, the function is implemented in a simple, "brute force" way: though
it achieves a decent search speed, it can in no way be compared with the index-based implementation of the
commercial query engine. This brute force implementation serves as a fall-back in the (rare) cases where the
query optimizer fails to find a query plan using indexes.

The function returns true if the string-value of at least one node of the context-nodes parameter matches
the full-text query. Matching is therefore not affected by element substructure. For example the phrase 'to be
or not to be' would be found in <line>To be or not to be ..</line>.

When context-nodes is not specified (it must be inside a predicate), the current context node '.' is used
implicitly like in the example above. When context-nodes parameter is present, it can be relative to the
current context node: for example this expression finds SPEECH elements which contain a LINE element
which in turn contains both words "romeo" and "Juliet":

//SPEECH [x:words(" romeo AND juliet ", LINE)]

Syntax of full text queries:

Simple term
A word without wildcard characters '*' and '?'. By default case and accents are ignored (i.e. "café is
equivalent with "CAFE").

Term with wildcard
Wildcard characters '*' and '?' can match several forms of a word, à la Unix. For example "intern*" would
match intern, internal, internals etc.

Approximate term
Notation: word~. Uses a generic phonetic distance algorithm (somewhat similar to Soundex).

Term alternative
Notation: term1 OR term2. The operator OR or the sign '|' can be used. It has precedence over AND (see
below).

Term conjunction
Notation: term1 AND term2. The operator AND or the sign '&' can be used or even simple juxtaposition:
thus "romeo AND juliet", "romeo & Juliet" and "Roméo Juliet" are equivalent.

Term exclusion
Notation: sign '-' or keyword NOT. For example "Romeo -Juliet" is equivalent with "Romeo AND NOT
Juliet".

Phrase
Ordered sequence of terms (simple words or patterns), surrounded by single or double quotes. By default,
terms must appear exactly in the order specified.

Qizx Programmer's Guide

3

It is possible to specify a tolerance or distance, which is the maximum number of words interspersed
among the terms of the phrase query. The notation is phrase~N where N is a optional count of words (4
by default). The two following examples match the phrase "to be or not to be, that is the question":

//SPEECH [x:words(" 'to be that question'~ ", LINE)]
//SPEECH [x:words(" 'to be or question'~6 ", LINE)]

Notice that there are some limitations in this syntax: the OR cannot combine AND clauses or phrases, however
this problem can be solved by boolean combinations of calls to x:words, for example:

doc("r_and_j.xml")//LINE [x:words("name AND rose") or x:words(" 'smell as sweet' ")]

would yield the two lines (Romeo and Juliet, act II scene 2):

<LINE>What's in a name? that which we call a rose</LINE>
<LINE>By any other name would smell as sweet;</LINE>

x:highlighter($query as xs:string, $fragment as element(), $parts as node()*,
$options as element(option)]) as element()

This function is a companion of fulltext search which "highlights" matched terms, more precisely it returns a
copy of a document fragment where matched terms are surrounded by generated elements. By default a gen-
erated element has the name 'span' and an attribute 'class' with a value equal to the prefix 'hi' followed by the
rank of the term in the query. Applied to a LINE in the example above, this would produce something like:

<LINE>What's in a name?
 that which we call a rose</LINE>

The first argument is a fulltext query. The second argument is the root of the document fragment to process,
the optional third argument $parts is a list of sub-elements of the root which must be specifically highlighted
(if empty, the whole root fragment is highlighted, otherwise only the specified parts). The 4th argument specifies
options: it allows to redefine the generated elements. For example:

<options element='el' attribute='at' prefix='pr'/>

would surround terms with <el at="pr0"></el> instead of .

2. Date, Time, Duration functions
Qizx/open does not currently implement all the functions and operators (some 20) specified in the current XML
Query Working Draft for manipulation of duration types. The types xdt:yearMonthDuration and xdt:dayTimeDur-
ation do exist in Qizx but are not really properly handled. We persist in believing that these durations types are of
very little utility for real applications (in addition to their peculiar properties that make them difficult to use).

Instead, Qizx provides more useful operators and extends the semantics of date and time constructors.

Additional constructors:
These constructor allow to build date, time, dateTime, and duration objects from numeric values (this useful cap-
ability is not provided by the current XQuery specifications).

xs:date($year as xs:integer, $month as xs:integer, $day as xs:integer) as
xs:date

builds a date from a year, a month, and a day in integer form. The implicit timezone is used.

For example xs:date(1999, 12, 31) returns the same value as xs:date("1999-12-31").

xs:time($hour as xs:integer, $minute as xs:integer, $second as xs:double)
as xs:time

builds a xs:time from an hour, a minute as integer, and seconds as double. The implicit timezone is used.

Qizx Programmer's Guide

4

xs:dateTime($year as xs:integer, $month as xs:integer, $day as xs:integer,
$hour as xs:integer, $minute as xs:integer, $second as xs:double [, $timezone
as xs:double])

builds a dateTime from the six components that constitute date and time.

A timezone can be specified: it is expressed as a signed number of hours (ranging from -14 to 14), otherwise
the implicit timezone is used.

xs:duration($months as xs:integer, $seconds as xs:double) as xs:duration
Builds a general duration from a number of months and a duration in seconds. Generally used to convert a
duration in seconds to a xs:duration (first argument equal to 0).

Additional arithmetic:
The current XQuery specifications have functions or operators to compute the difference between two dates or
two dateTimes, unfortunately the result is a xdt:dayTimeDuration or xdt:yearMonthDuration: when one wants a
numeric duration (seconds or days) - we assume that it is the most frequent case -, it is far from easy to convert
from these types. Conversely, when one wants to add a numeric duration to a date or dateTime, the current spe-
cifications provide a form of the operator + (for example op:add-dayTimeDuration-to-dateTime), but the argument
is also a duration, and converting from a number to a duration is even more difficult...

Therefore more convenient operators are provided:

operator - ($date1 as xs:date, $date2 as xs:date) as xs:integer
returns the difference in days between two dates. Timezones are not taken into account - It seems not to make
much sense -, else the result should be decimal or double.

operator - ($date1 as xs:dateTime, $date2 as xs:dateTime) as xs:double
returns the difference in seconds between two dateTimes. Here the timezone are taken into account.

operator - ($time1 as xs:time, $time2 as xs:time) as xs:double
returns the difference in seconds between two times. The timezone are taken into account.

operator + ($date as xs:date, $days as xs:integer) as xs:date
adds days (possibly negative) to a date and returns a new date.

operator + ($dateTime as xs:dateTime, $duration as xs:double) as xs:dateTime
add seconds to a dateTime and returns a new dateTime.

operator + ($time as xs:dateTime, $duration as xs:double) as xs:time
add seconds to a time and returns a new time.

Examples:

xs:date("2000-01-01") - xs:date("1999-12-31") --> 1
xs:dateTime("2000-01-01T00:00:00") - xs:dateTime("1999-12-31T23:59:59") --> 1
xs:date("1999-12-31Z") + 1 --> 2000-01-01Z
xs:dateTime("1999-12-31T23:59:59Z") + 1 --> 2000-01-01T00:00:00Z

Difference on component extraction functions:
The values returned by component extraction functions get-hours-from-*** are relative to the timezone of the
date/time object. For example get-hours-from-dateTime(xs:dateTime("2003-09-23T23:55:00")) returns 23 whatever
the actual implicit timezone.

The W3C specifications require a UTC return value, but this is rather disconcerting: the expression above would
return diverse values when executed in different timezones.

Qizx Programmer's Guide

5

3. Java binding
This feature allows to call Java methods and to manipulate wrapped Java objects. This is very powerful as it
provides access to nearly all the Java APIs.

It is similar to the mechanism provided by XT or Saxon: a call to a function ns:fun() where ns is bound to a
namespace of the form java:fullyQualifiedClassName is treated as a call of the static method fun of the class with
name fullyQualifiedClassName. Hyphens in method names are removed with the character following the hyphen
being upper-cased (aka 'camelCasing'). The following example calls the getInstance() method of class
java.util.Calendar:

declare namespace cal = "java:java.util.Calendar"
cal:get-instance()

Overloading based on number and type of parameters is allowed, with the current limitation that if several methods
match the actual argument types, which method is actually called is unpredictable.

A non-static method is treated like a static method with an additional first argument (this). The additional actual
argument must of course match the class of the method.

A call to a function named new invokes a constructor. Overloading is allowed on constructors in the same way as
on regular methods.

Extension functions can return objects of arbitrary classes which can then be passed as arguments to other extension
functions or stored in variables. The type of such objects is xdt:object (formerly named xs:wrappedObject). It is
always possible to get the string value of a Java object [invokes the Java method toString().]

The following conversions are performed on arguments and conversely on returned values:

Table 2. Types conversions

XML Query typeJava type

empty()void (return type)

xs:stringString

xs:booleanboolean, Boolean

xs:doubledouble, Double

xs:floatfloat, Float

xs:integerlong, Long

xs:intint, Integer

xs:shortshort, Short

xs:bytebyte, Byte

xs:integerchar, Char

node()net.xfra.qizxopen.xquery.dm.Node

xdt:objectother class

xs:string *String[]

xs:double *double[], float[]

xs:integer *long[], int[], short[], byte[], char[]

node()*net.xfra.qizxopen.xquery.dm.Node[]

xdt:object *other array

xdt:object *java.util.Enumeration, java.util.Vector, java.util.ArrayL-
ist

Qizx Programmer's Guide

6

The following example invokes a constructor, gets a wrapped File in variable $f, then invokes the non-static
method createNewFile():

declare namespace file = "java:java.io.File"

let $f := file:new("myfile")
return file:createNewFile($f) (: or create-new-file() :)

This example lists the files of the current directory with their sizes :

declare namespace file = "java:java.io.File"

for $f in file:listFiles(file:new(".")) (: or list-files() :)
return
 <file name="{ $f }" size="{ file:length($f) }"/>

4. Java API
This section explains how to integrate Qizx in applications. Implementing new predefined functions is beyond the
scope of this document.

An advanced example application is the provided by the command line tool net.xfra.qizx.app.XQuery (it is recom-
mended to read the source code). The "Server Pages" extension, which embeds the engine in a Servlet, is also an
advanced application that provides an example of connection with SAX.

The API allows to:

• setup compilation and execution environments (also known as static context and dynamic context respectively).

• compile queries

• execute queries

• manipulate results of query evaluations

Packages: To use the API, classes from the following packages may have to be imported:

Table 3. packages

This is the root package for XQuery, it contains in partic-
ular XQueryProcessor, Query, Value, Item,
Type, Log.

net.xfra.qizxopen.xquery

(XQuery Data Model) Can be used for lower-level oper-
ations: contains principally the XQuery Node interface.

net.xfra.qizxopen.xquery.dm

Data Model independent of XQuery: contains support
for serialization (XMLSerializer) and a super-inter-
face Node.

net.xfra.qizxopen.dm

Utilitiesnet.xfra.qizxopen.util

Outline
The fundamental API object is XQueryProcessor.

XQueryProcessor provides a static environment to compile a query from text source, and a dynamic environment
(in particular a Document Manager) to execute this query.

Qizx Programmer's Guide

7

A typical Qizx application will perform the following steps:

1. Instantiate a XQueryProcessor: this can be done from scratch or by cloning a "master" XQueryProcessor that
serves as a model.

2. Optionally set options or specify ancillary Module Manager or Document Manager that can be shared by
several XQueryProcessors.

A Module Manager is in charge of compiling/loading and caching library modules. A Document Manager
performs document loading/parsing and optionally caching (Documents are read-only and thread-safe).

3. Compile a query from a file, a URL, a string: this requires a Log object which is used for printing messages.
A successful compilation returns a Query object. The compiled Query can be used several times and in sev-
eral threads.

4. Before executing a compiled Query, other options can be set in the processor, and global variables can be
initialized.

5. Running a Query with the can be performed in different ways (methods executeQuery of XQueryProcessor):

• The simplest way is to serialize directly the result into an output stream (this implies that the result is a
well-formed document). The serializer (XMLSerializer) supports a number of options, notably it can
generate XML, HTML, XHTML markup, or plain text.

• With the same method, one can generate a tree using a EventDrivenBuilder (package net.xfra.qizx-
open.xquery.dm). This tree can then be manipulated through the Node interface. Notice that according to
the "functional" approach used in XPath/XQuery/XSLT, the tree cannot be modified once built.

• Another possibility is to generate the result into a SAX interface, for example to pass it to a XSLT processor.
This is conveniently achieved by using SAXXQueryProcessor, a subclass of XQueryProcessor.

• A third, more general way is to obtain the results as a Value, i.e. an Item sequence and enumerate the
items. Items can be Nodes or atomic values (like string, double, boolean etc.). This implies to check the
types of items and extract values appropriately through a set of specialized methods. This is more com-
plicated and generally not necessary.

Step-by-step illustration:
1. Instantiate a XQueryProcessor, for example like this:

import net.xfra.qizxopen.xquery.*;
...
XQueryProcessor processor =
 new XQueryProcessor(moduleBaseURI, documentBaseURI);

The parameters are base URIs (in String form) respectively for resolution of module and document relative
URIs. This constructor automatically creates a private ModuleManager and a private DocumentManager.

A XQueryProcessor can also be created from a master XQueryProcessor, inheriting the Module Manager and
the Document Manager and default settings from the master. This can be convenient for server side applications
to share the same resources among different clients.

XQueryProcessor processor = new XQueryProcessor(masterProcessor);

Note: modules and queries are thread-safe and can be shared. Documents are read-only (this is implied by
the XQuery Data Model) and can also be shared without difficulty. However this capability has not yet been
tested extensively.

2. Setting static options: there are quite a few possible settings:

Qizx Programmer's Guide

8

Predefine a namespace (prefix + URI) that is visible by compiled queries (method predefineNameSpace).•

processor.predefineNameSpace("myns", "my.uri");

This allows to use the myns: prefix to designate the namespace, without declaring it explicitly in queries.

• Predefine a global variable visible by compiled queries (method predefineGlobal): for example the command
line application predefines a variable $arguments of type xs:string* that collects the options passed on
the command line.

processor.predefineGlobal("arguments", Type.STRING.star);

• Register a collation, define the default collation.

• Define or redefine the ModuleManager: this can be useful if a different implementation is used.

• Define or redefine the DocumentManager: this can be useful if a different implementation is used.

• Explicitly authorize Java classes to be used by the Java binding mechanism: this is a security feature.

3. Compile a Query:

there are different variants of method XQueryProcessor.compileQuery. Basically it needs a piece of text (a
CharSequence, i.e. typically a String) which can also be read from a stream or a File.

An URI must be specified for use by error message and traces. For a file or URL input this would typically
be the string value of the path or the URL.

A third parameter is a Log that is used for receiving messages. By default it writes to System.err and can be
redirected to a stream. It has overridable display methods for easier subclassing (for example display in a
GUI).

String querySource = " for $i in 1 to 3 return element E { attribute A { $i } } ";
Log log = new Log(); // Writes on System.err by default
try {
 Query query = processor.compileQuery(querySource, "<source>", log);
 ...
} catch(XQueryException e) {
 ...
}

Exceptions can be raised on a syntax error (prevents further compilation) or by static analysis errors (at end
of compilation).

4. Setting run-time options:

Typically, global variables (declared external in queries) can be initialized here. Initial values specified in
queries can also be overridden. The method initGlobal has different variants, according to the value passed.
An exception is raised if the value does not match the declared type.

Initial values are part of the execution environment and do not affect compiled Queries which can be shared
by several threads.

Other options: default output for function x:serialize, node or node sequence used for XQuery function input(),
implicit timezone, message log.

5. Executing a compiled query and exploit results:

a. Direct serialization:

XMLSerializer serial = new XMLSerializer();
serial.setOutput(new FileWriter("out.xml"));

Qizx Programmer's Guide

9

serial.setOption("method", "xhtml");
serial.setOption("indent", "yes");
 // ... other options can be set on the serializer...
processor.executeQuery(query, serial);

b. Tree building:

EventDrivenBuilder builder = new EventDrivenBuilder();
processor.executeQuery(query, builder);
Node result = builder.crop();

c. SAX output: SAXXQueryProcessor implements the interface org.xml.sax.XMLReader and can therefore
be used to build a SAXSource for use with APIS javax.xml.transform: for example pipe a XQuery exe-
cution with a XSLT transformation.

d. Get a Value and enumerate Items:

Value v = processor.executeQuery(query);
while(v.next()) { // When next() returns true, an item is available
 if(v.isNode()) {
 Node n = v.asNode();
 ... // use the Node interface to navigate in the subtree, extract
 // element names, attributes, string values...
 }
 else {
 ItemType type = v.getType(); // type of current item
 if (type == Type.DOUBLE) {
 double d = v.asDouble();
 }
 ... // use the different asX() methods, according to the type
 }
}

This approach requires a good knowledge of the API and is generally not needed.

6. Handle errors: execution can raise an EvalException. The message of the exception gives the reason for the
error. It is also possible to display the call trace:

try {
 Value v = processor.executeQuery(query);
 ...
} catch (EvalException ee) {
 ee.printStack(log, 20);
}

The stack trace is printed to a Log object. The second argument gives a depth maximum for the trace (0 means
no maximum).

Qizx Programmer's Guide

10

