
Using XQuery as a template language
in Web applications.

Table of Contents
1. Introduction ... 1
2. XML Query ... 2
3. Qizx Execution Environment .. 2

3.1. Generic Servlet .. 3
3.2. API ... 3
3.3. Serialization and XSLT Transforms ... 4

Abstract

XML Query shows an interesting capacity to be used as a "Server Pages" technology, a template language for
generating Web pages. Several implementations of this functionality have already been proposed (GNU/Qexo[1],
eXist[2]). This paper introduces XQuery Server Pages (*), Qizx/open's own implementation. It assumes that the
reader has a some knowledge of both XML Query and writing web applications with servlets or JSP.

A demonstration .war (Web Application Archive) with a few simple examples can be downloaded from Qizx/open's
web site. See the download page[3].

(*) this obvious reference to JSP or ASP should be regarded as a bit humorous, as XQSP has no pretension to
compete with these widely used technologies. However an effort to standardize the use of XQuery in Web applications
could become of interest in a not-so-distant future.

1. Introduction
Many template languages are available today for generating Web pages: JSP, ASP, PHP... Most of these formalisms
rely on some special markup that allows to distinguish between instructions or expressions in a particular program-
ming language (to be evaluated) and raw HTML or XML (to be simply sent to the HTTP pipe): for example ASP
and JSP use <% ... %> tags, PHP uses processing-instructions <?php ... ?>.

The advantages of this approach are: simplicity; efficiency (templates are in general preprocessed and compiled);
compatibility with HTML editors.

The drawbacks are also well-known: see for example the article by Jason Hunter "the problems with JSP[4]": un-
structured mixing of HTML markup and executable instructions produce cluttered source code, incline programmers
to put too much code in templates, hence a poor separation between logic and presentation. In addition a language
like Java is sometimes not very convenient in some common tasks like iterating on data structures.

Several techniques have been used to palliate such problems: components (COM, Java Beans) encapsulate business
logic complexities; Tag Libraries put control logic in specialized tags à la XSLT; Model-View-Controller approach
("JSP Model 2") completely separate logic and presentation;

[1] http://www.gnu.org/software/qexo/XQ-Gen-XML.html
[2] http://exist.sourceforge.net/devguide.html
[3] http:///www.xfra.net/qizxopen/download.html
[4] http://www.servlets.com/soapbox/problems-jsp.html

1

http://www.gnu.org/software/qexo/XQ-Gen-XML.html
http://exist.sourceforge.net/devguide.html
http:///www.xfra.net/qizxopen/download.html
http://www.servlets.com/soapbox/problems-jsp.html

2. XML Query
XML Query is not merely a query language to retrieve XML from databases; It is in itself a quite powerful processing
language which can very well be used as a "Server Pages" technology:

• A XML Query expression evaluating as a document or an element is actually a template, that always generates
a well-formed XML structure. XQuery is basically capable of generating XML documents: it has powerful
instructions to construct, access and combine XML nodes.

• XML Query mixes executable instructions and "tags" in a clean way: instructions and tags can be nested at
any level with a consistent syntax. In fact, "tags" are not different than instructions. They are integral part of
the XML Query language (they are called "element constructors").

• Hence using XQuery as a template language can be very interesting in applications

• which directly manipulate XML fragments: this is typically the case when XQuery is used as the query
and processing language of a native XML database / search engine.

By contrast, manipulating XML fragments for example with Java and DOM is fairly uneasy.

• Where the generation task is non-trivial:

• Unlimited nesting of instructions and "tags" allow sophisticated yet clean coding.

• Functions (returning elements) can be used as building-blocks or templates, at several levels.

By contrast, with classical template languages it is hardly possible to go beyond simple and fixed template
structures.

• Limitations: XQuery in web applications cannot be as efficient as JSP, however this will rarely be an issue.

A sample: when setup in the XQSP environment provided by Qizx, the following snippet is able to echo the
headers of an HTTP request:

Figure 1. The expressions embedded in element constructors are marked in blue. A nested element constructor itself containing expressions can be noticed inside the FLWOR loop.

The template contains calls to standard functions (current-date and current-time) and to Java extension functions
(request:getHeaderNames and request:getHeader).

3. Qizx Execution Environment
The XQuery Server Pages implemented by Qizx provide the following features:

• A generic servlet recognizes requests with .xqsp extension, is able to load and cache corresponding queries
and to run them with the XQuery engine. The result is serialized and sent back as HTTP response.

• Access to the entire Java Servlet API through the Java extension mechanism available in Qizx.

Using XQuery as a template language
in Web applications.

2

• Convenience functions to ease basic tasks (access HTTP request and response, manipulate attributes and beans
in page/request/session/application, forward request to other pages etc...)

• Serialization options can be specified through pragmas.

• Optional XSLT post-processing of the evaluated query: provides another form of separation between processing
and presentation.

A Web Application Archive (WAR) containing such facilities and a few simple examples is freely available. See
Qizx/open's download page[5].

3.1. Generic Servlet
In the example Web Application, this servlet (net.xfra.qizxopen.server.XQServlet) is configured to invoke XQuery
Pages on HTTP requests which have a path ending with ".xqsp". This is achieved through a mapping in application
descriptor web.xml.

It is generally possible to define a server-wide mapping from the .xqsp extension to the generic XQServlet: this
is however a server-dependent issue. Refer to the documentation of your preferred Servlet Container.

The generic servlet compiles XQuery Pages as needed and caches them. If a page resource was modified, it is
automatically reloaded. Similarly, the servlet can load and cache XSLT templates, optionally used as a post pro-
cessing of XQuery output. The cache sizes can be defined in configuration file web.xml.

3.2. API
The HttpServlet API is accessible through the Java extension mechanism. To make programming in XQuery
easier, three namespace prefixes are predefined:

gives access to a few convenience functions (described
below), for example xqsp:headerNames(),
xqsp:forward(path), xqsp:use-bean(...).

xqsp:

gives access to interface javax.servlet.http.Ht-
tpServletRequest

request:

gives access to interface javax.servlet.http.Ht-
tpServletResponse

response:

It means that all methods of these interfaces HttpServletRequest and HttpServletResponse are accessible in XQuery.
For example request:get-parameter(name), or equivalently request:getParameter(name)
maps the Java method HttpServletRequest.getParameter(String name).

Notice that it is not necessary to pass the request object itself (this is done implicitly). However the request and
response objects can be accessed through variables $xqsp:request and $xqsp:response.

An example using several methods of interfaces HttpServletRequest and HttpSession. Notice that method names
are written in the two possible styles: normal (aka camelCase) or in lowercase with dashes:

[5] download.html

Using XQuery as a template language
in Web applications.

3

download.html

Figure 2. A more comprehensive excerpt of echo.xqsp

Convenience functions (prototypes are given in XQuery style, prefix is always xqsp:):

xqsp:getResourceAsString($name as xs:string) as xs:string?
Loads a text file as a string: the file must be a resource of the current web application context.

xqsp:forward($path as xs:string) as xs:boolean
Forwards the request to another page on the server. The path must begin with the "/" and be relative to the
application context.

xqsp:parameterNames() as xs:string*
Returns a sequence of HTTP parameter names. This is simply a convenience wrapper: request:getParameter-
Names() is almost equivalent, but this function's type is xs:string*, which makes easier to use.

xqsp:headerNames() as xs:string* xqsp:initParameterNames() as xs:string*
similar wrappers for header names and init parameter names.

xqsp:get-attribute($name as xs:string) as item()?, xqsp:set-attribute($name as xs:string, value as item()),
 xqsp:remove-attribute($name as xs:string)

Manage attributes on the current page. Arbitrary objects can be associated as named attributes of the page.

xqsp:use-bean($name as xs:string, $classname as xs:string, $scope as xs:string) as item()?
This is similar to the use-bean functionality in JSP: an object can be instantiated from a Java class (if necessary)
and associated as an attribute in a particular scope: the scope can be "page", "request" (attributes survive
to a forward), "session" (attributes are valid along the same user session), "application" (attributes
are shared by all users of the same web application).

Argument $classname must be the fully qualified name of a loadable class. If it does not exist yet, it is instan-
tiated like a Java Bean.

xqsp:get-attribute($name as xs:string, $scope as xs:string) as item()?
Retrieves an attribute i.e a bean) from a scope. Returns the empty sequence if not found (no instantiation
performed).

3.3. Serialization and XSLT Transforms
Serialization

Serialization options can be specified inside pages by a pragma put anywhere in the page: the name of the
pragma must be qizx:serialization or qizx:serialize. The body of the pragma contains name= value pairs for
serialization options, with the same semantics as the x:serialize function.

Using XQuery as a template language
in Web applications.

4

(::pragma qizx:serialization
 method=XHTML media-type=text indent=no encoding=iso8859-1 ::)

It is not currently possible to specify such options dynamically.

Pipelining with XSLT transformations
The result of a XQuery Page evaluation can be passed to a XSLT1 stylesheet. This allows a kind of separation
between presentation and logic. It can also be more convenient for formatting data extracted from databases.

This is also achieved by using a pragma. The name of the pragma must be qizx:transform.

A particular option is stylesheet: it specifies the path of a XSLT stylesheet resource. Other options are passed
as parameters of the stylesheet.

(::pragma qizx:transform
 stylesheet=shakespeare.xsl param1=value1 param2=value2 ::)

Using XQuery as a template language
in Web applications.

5

