Qizx Programmer's Guide

Table of Contents

O e = g T Lo g I 11 e 1 T PSSR 1
2. Date, Time, DUration FUNCLIONSiieiiieiiee ettt e e e e e e e e et e et e et e aa e eanns 4
G N = Y- o oo (1 6
N = Y= 1 e 7

Qizx isbasically aclass library implementing a XQuery engine embeddable in different kinds of applications. It
has therefore a Java APl which allows to compile and execute queries, define execution environments, seriaize
the results or passthem to a SAX output. The API a so provides access to the Data Model, allowing to manipulate
Nodes that constitute XML documents. This API is presented in Section 4 (Java API[1]) ; see aso the Javadoc[2].

For XQuery programming, Qizx provides different kinds of extensions:

XQuery functions
Additional predefined functions. They belong to a private namespace "qizx.extensions' referenced by the x:
or qizx: prefixes.

They implement in particular seridization, error handling, text searching and highlighting.

Extensionsto standard XQuery functions
Some standard functions (manipulation of date, time, duration) have been extended or modified to become
more powerful or more convenient.

Binding Java methods as supplementary functions
This mechanism (similar to those found in other XSLT and XQuery engines, for example Saxon) provides an
easy way to extend XQuery by binding methods of any Java class, making this methods appear as XQuery
functions. Arguments and results are automatically converted if possible (number, string, boolean) or can be
mani pul ated as opagque wrapped objectswithtypexdt : obj ect . Qizx also converts Javaarrays, vectors and
enumerations to XQuery sequences and conversely.

Web applications
This extension uses XQuery as a powerful and convenient Web page template language: the results of an ex-
pression evaluation are serialized to the HT TP output stream, or alternately can be pipedto aXSLT transform-
ation. The whole Java Serviet API is available through the Java extension mechanism mentioned above, or
through convenience functions. Thisfeatureis described in aseparate document: XML Query Server Pages[3].

1. Extension functions

These functions belong to the namespace "qizx.extensions' for which the prefixes x: and gi zx: are predefined.

x:serialize($tree as elenent(), $options as el ement (option)) as xs:string?
Serializes the tree element into marked-up text. The value returned is the path of the output file, or the empty
sequence if the default output is used.

(1] #javapi
[2] javadoc/index.html
[3] doc_xqgsp.html

#javapi
javadoc/index.html
doc_xqsp.html

Qizx Programmer's Guide

The options argument (which may be absent) has the form of a element of name "options' whose attributes
are used to specify different options. For example:

x:serialize($doc,
<opti ons out put="out\doc.xm " encodi ng="1|SO 8859-1" i ndent="yes"/>)

This mechanism reminds XSLT's xdl:output specification and is very convenient since the options can be
computed or extracted from a XML document.

Table 1. Implemented options

supported by the JRE.

option name values description
method XML (default) XHTML, HTML, or | output method
TEXT

output / file afile path output file. If this option is not spe-
cified, the generated text is written
to default output, which can be spe-
cified through the Java control API.

version default "1.0" version generated in the XML de-
claration. No validity check.

standalone "yes' or "no". No check is performed.

encoding must be the name of an encoding| The name supplied is generated in

the XML declaration. If different
than UTF-8, it forces the output of
the XML declaration.

indent

"yes' or "no". (default no)

output indented.

indent-value

integer value

(extension) specifies the number of
space characters used for indenta-
tion.

omit-xml-declaration

"yes' or "no". (default no)

controlsthe output of aXML declar-
ation.

include-content-type

"yes' or "no". (default no)

for XHTML and HTML methods,
if the value is "yes', a META ele-
ment specifying the content type is
added at the beginning of element
HEAD.

escape-uri-attributes

"yeS" or "no".

for XHTML and HTML methods,
escapes URI attributes.

doctype-public

the public ID inthe DOCTY PE de-
claration.

Triggers the output of the DOC-
TY PE declaration.

doctype-system

the system ID in the DOCTY PE
declaration.

Triggers the output of the DOC-
TY PE declaration.

x:catch-error($expression, $fallback)
Thereis currently no mechanismin XQuery to handle errors. Most errors must not be recovered (for example
type errors), however a problem arises for example with the function doc which loads a document: if the
document is not found or has parsing errors, the desired behavior is generally not that the whole execution
failswith afatal error.

This function catches a possible error in the evaluation of the first argument. If no error occurs, the value of
the first argument is returned, else the second argument is evaluated and its value returned. An error in the
evaluation of the second argument is not caught.

Qizx Programmer's Guide

The type of the function is the type that encompasses the types of both arguments.
Remark: a better mechanism is desirable in order to retrieve the cause of the error.

x:system property($nane as xs:string) as iten()?
Returns the value of a"system" or application property. Similar to the function with same namein XSLT.

Additional properties can be defined through the Java API.

x:words($query as xs:string [, $context-nodes as node()*]) as xs: bool ean
Thisfunction (also named x: f ul | t ext) implements context-sensitive full-text search: it can search boolean
combinations of words, word patterns and phrases. It is typically used inside a predicate. For example the
following expression returns SPEECH elements which contain both words "romeo™ and "juliet":

[/ SPEECH [x:words(" romeo AND juliet ")]

Caution: in the open-source version, the function isimplemented in a simple, "brute force" way: though
it achieves a decent search speed, it can in no way be compared with the index-based implementation of the
commercia query engine. This brute force implementation serves as afall-back in the (rare) cases where the
guery optimizer failsto find a query plan using indexes.

Thefunction returnstrueif the string-value of at least one node of the cont ext - nodes parameter matches
the full-text query. Matching is therefore not affected by element substructure. For example the phrase 'to be
or not to be' would befound in<l i ne>To be or not to be ..</line>.

When cont ext - nodes is not specified (it must be inside a predicate), the current context node . is used
implicitly like in the example above. When cont ext - nodes parameter is present, it can be relative to the
current context node: for example this expression finds SPEECH elements which contain a LINE element
which in turn contains both words "romeo" and "Juliet":

[/ SPEECH [x:words(" ronmeo AND juliet ", LINE)]
Syntax of full text queries:

Simpleterm
A word without wildcard characters *' and '?. By default case and accents are ignored (i.e. "café is
equivalent with "CAFE").

Term with wildcard
Wildcard characters™*' and "? can match several formsof aword, alaUnix. For example"intern*" would
match intern, internal, internals etc.

Approximateterm
Notation: word~. Uses a generic phonetic distance algorithm (somewhat similar to Soundex).

Term alternative
Notation: terml OR term2. The operator OR or the sign'|' can be used. It has precedence over AND (see
below).

Term conjunction
Notation: terml AND term2. The operator AND or the sign '&' can be used or even simple juxtaposition:
thus "romeo AND juliet”", "romeo & Juliet" and "Roméo Juliet" are equivalent.

Term exclusion
Notation: sign '-' or keyword NOT. For example "Romeo -Juliet" is equivalent with "Romeo AND NOT
Juliet”.

Phrase
Ordered sequence of terms (simplewords or patterns), surrounded by single or double quotes. By default,
terms must appear exactly in the order specified.

Qizx Programmer's Guide

It is possible to specify atolerance or distance, which is the maximum number of words interspersed
among the terms of the phrase query. The notation is phrase~N where N is a optional count of words (4
by default). The two following examples match the phrase "to be or not to be, that is the question™:

/] SPEECH [x:words(" 'to be that question'~ ", LINE)]
// SPEECH [x:words(" 'to be or question'~6 ", LINE)]

Noticethat there are some limitationsin this syntax: the OR cannot combine AND clauses or phrases, however
this problem can be solved by boolean combinations of calls to x:words, for example:

doc("r_and_j.xm ")//LINE [x:words("nanme AND rose") or x:words(" 'snmell as sweet' ")]

would yield the two lines (Romeo and Juliet, act |1 scene 2):

<LINE>What's in a nane? that which we call a rose</LINE>
<LI NE>By any ot her nane woul d snell as sweet; </LI NE>

x: highlighter($query as xs:string, $fragnent as el ement(), $parts as node()*,
$options as elenment(option)]) as el enent()

2.

This function is acompanion of fulltext search which "highlights" matched terms, more precisely it returns a
copy of adocument fragment where matched terms are surrounded by generated elements. By default agen-
erated element has the name 'span’ and an attribute 'class with avalue equal to the prefix 'hi' followed by the
rank of the term in the query. Applied to a LINE in the example above, this would produce something like:

<LINE>What's in a nane</ span>?
that which we call a r ose</ span></ LI NE>

Thefirst argument is a fulltext query. The second argument is the root of the document fragment to process,
the optional third argument $partsisalist of sub-elements of the root which must be specifically highlighted
(if empty, thewholeroot fragment is highlighted, otherwise only the specified parts). The 4th argument specifies
options: it allows to redefine the generated elements. For example:

<options elenent="el' attribute="at' prefix="pr'/>

would surround termswith <el at =" pr 0" ></ el > instead of </ span>.

Date, Time, Duration functions

Qizx/open does not currently implement all the functions and operators (some 20) specified in the current XML
Query Working Draft for manipulation of duration types. The typesxdt:yearM onthDuration and xdt:day TimeDur-
ation do exist in Qizx but are not really properly handled. We persist in believing that these durations types are of
very little utility for real applications (in addition to their peculiar properties that make them difficult to use).

Instead, Qizx provides more useful operators and extends the semantics of date and time constructors.

Additional constructors:

These constructor allow to build date, time, dateTime, and duration objects from numeric values (this useful cap-
ability is not provided by the current XQuery specifications).

XS:
XS:

XS!:

as

date($year as xs:integer, $nonth as xs:integer, $day as xs:integer) as
dat e
builds a date from ayear, amonth, and aday in integer form. The implicit timezoneis used.

For example xs:date(1999, 12, 31) returns the same value as xs.date("' 1999-12-31").
time($hour as xs:integer, $mnute as xs:integer, $second as xs:double)

Xs:time
builds a xs:time from an hour, a minute as integer, and seconds as double. The implicit timezoneis used.

Qizx Programmer's Guide

xs: dateTi me($year as xs:integer, $nonth as xs:integer, $day as xs:integer,
$hour as xs:integer, $mnute as xs:integer, $second as xs:double [, $tinezone
as xs:double])

builds a dateTime from the six components that constitute date and time.

A timezone can be specified: it is expressed as a signed number of hours (ranging from -14 to 14), otherwise
the implicit timezone is used.

xs:duration($nonths as xs:integer, $seconds as xs:double) as xs:duration
Builds a genera duration from a number of months and a duration in seconds. Generally used to convert a
duration in seconds to axs:duration (first argument equal to 0).

Additional arithmetic:

The current XQuery specifications have functions or operators to compute the difference between two dates or
two dateTimes, unfortunately the result is a xdt:dayTimeDuration or xdt:yearMonthDuration: when one wants a
numeric duration (seconds or days) - we assume that it is the most frequent case -, it is far from easy to convert
from these types. Conversely, when one wants to add a numeric duration to a date or dateTime, the current spe-
cifications provide aform of the operator + (for example op:add-day TimeDuration-to-dateTime), but the argument
isalso aduration, and converting from a number to aduration is even more difficult...

Therefore more convenient operators are provided:

operator - ($datel as xs:date, $date2 as xs:date) as xs:integer
returns the difference in days between two dates. Timezones are not taken into account - It seems not to make
much sense -, else the result should be decimal or double.

operator - ($datel as xs:dateTine, $date2 as xs:dateTine) as xs:double
returns the difference in seconds between two dateTimes. Here the timezone are taken into account.

operator - ($tinel as xs:tinme, $tinme2 as xs:tine) as xs:double
returns the difference in seconds between two times. The timezone are taken into account.

operator + ($date as xs:date, $days as xs:integer) as xs:date
adds days (possibly negative) to a date and returns a new date.

operator + ($dateTinme as xs:dateTime, $duration as xs:double) as xs:dateTi me
add seconds to a dateTime and returns a new dateTime.

operator + ($tine as xs:dateTine, $duration as xs:double) as xs:tine
add seconds to atime and returns anew time.

Examples:

xs: dat e("2000- 01-01") - xs:date("1999-12-31") --> 1

xs: dat eTi me("2000- 01- 01TOO: 00: 00") - xs:dateTi ne("1999-12-31T723:59:59") -->1
xs: date("1999-12-312") + 1 --> 2000-01-01Z

xs: dat eTi me("1999-12-31T23: 59: 597") + 1 --> 2000- 01- 01TOO: 00: 00Z

Difference on component extraction functions:

The values returned by component extraction functions get-hours-from-*** are relative to the timezone of the
date/time object. For example get-hours-from-dateTime(xs:dateTime(" 2003-09-23T23:55:00")) returns 23 whatever
the actual implicit timezone.

The W3C specifications require a UTC return value, but thisis rather disconcerting: the expression above would
return diverse values when executed in different timezones.

Qizx Programmer's Guide

3. Java binding

This feature allows to call Java methods and to manipulate wrapped Java objects. This is very powerful as it
provides access to nearly all the Java APIs.

It is similar to the mechanism provided by XT or Saxon: acall to afunctionns: f un() wherensisboundto a
namespace of the form java: fullyQualifiedClassNameistreated asacall of the static method f un of the classwith
name fullyQualifiedClassName. Hyphens in method names are removed with the character following the hyphen
being upper-cased (aka 'camelCasing’). The following example calls the get | nst ance() method of class
java.util.Cal endar:

decl are nanespace cal = "java:java.util.Cal endar"
cal : get-i nstance()

Overloading based on number and type of parametersisallowed, with the current limitation that if several methods
match the actual argument types, which method is actually called is unpredictable.

A non-static method is treated like a static method with an additional first argument (this). The additional actual
argument must of course match the class of the method.

A call to afunction named newinvokes a constructor. Overloading is allowed on constructors in the same way as
on regular methods.

Extension functions can return objects of arbitrary classeswhich can then be passed as argumentsto other extension
functions or stored in variables. The type of such objects is xdt:object (formerly named xs:wrappedObject). It is
always possible to get the string value of a Java object [invokes the Javamethodt oSt ri ng() .]

The following conversions are performed on arguments and conversely on returned values:

Table 2. Types conversions

Javatype XML Query type
void (return type) empty()
String Xs:string
boolean, Boolean xs:boolean
double, Double xs.double
float, Float xs:float
long, Long Xs.integer
int, Integer xsint
short, Short xs:short
byte, Byte xs.byte
char, Char Xs.integer
net.xfra.gizxopen.xquery.dm.Node node()
other class xdt:object
String[] Xs.string *
doublq[], float]] xs.double *
long[], int[], short[], byte[], char[] Xs.integer *
net.xfra.gizxopen.xquery.dm.Node] | node()*
other array xdt:object *
java.util.Enumeration, java.util.\Vector, java.util ArrayL - | xdt:object *
ist

Qizx Programmer's Guide

The following example invokes a constructor, gets a wrapped File in variable $f, then invokes the non-static
method createNewFile():

decl are nanespace file = "java:java.io.File"

let $f :=file:new("nyfile")
return file:createNewFil e($f) (: or create-newfile() :)

This example lists the files of the current directory with their sizes:

decl are nanespace file = "java:java.io.File"
for $f in file:listFiles(file:newm(".")) (: or list-files() :)
return

<file name="{ $f }" size="{ file:length($f) }"/>

4. Java API

This section explains how to integrate Qizx in applications. Implementing new predefined functionsis beyond the
scope of this document.

An advanced exampl e application isthe provided by the command line tool net.xfra.gizx.app.XQuery (it isrecom-
mended to read the source code). The "Server Pages' extension, which embeds the enginein a Servlet, isalso an
advanced application that provides an example of connection with SAX.

The API dlowsto:

» setup compilation and execution environments (al so known as static context and dynamic context respectively).
e compile queries

» execute queries

* manipulate results of query evaluations

Packages. To usethe AP, classes from the following packages may have to be imported:

Table 3. packages

net.xfra.gizxopen.xquery Thisistheroot package for XQuery, it containsin partic-
ular XQueryProcessor, Query, Val ue, Item
Type, Log.

net.xfra.gizxopen.xquery.dm (XQuery DataModel) Can be used for lower-level oper-
aions. containsprincipally the XQuer y Node interface.

net.xfra.gizxopen.dm Data Model independent of XQuery: contains support
for serialization (XMLSer i al i zer) and asuper-inter-
face Node.

net.xfra.gizxopen.util Utilities

Outline

The fundamental API object is XQueryProcessor.

XQueryProcessor provides a static environment to compile a query from text source, and a dynamic environment
(in particular a Document Manager) to execute this query.

Qizx Programmer's Guide

A typical Qizx application will perform the following steps:

1

I nstantiate a X QueryProcessor: this can be done from scratch or by cloning a"master" X QueryProcessor that
serves as amodel.

Optionally set options or specify ancillary Module Manager or Document Manager that can be shared by
several XQueryProcessors.

A Module Manager is in charge of compiling/loading and caching library modules. A Document Manager
performs document loading/parsing and optionally caching (Documents are read-only and thread-safe).

Compileaquery from afile, aURL, astring: thisrequires a L og object which is used for printing messages.
A successful compilation returns a Query object. The compiled Query can be used several timesand in sev-
eral threads.

Before executing a compiled Query, other options can be set in the processor, and global variables can be
initialized.

Running a Query with the can be performed in different ways (methodsexecut eQuer y of XQueryProcessor):

e The simplest way isto serialize directly the result into an output stream (this implies that the result is a
well-formed document). The serializer (XML Serializer) supports a number of options, notably it can
generate XML, HTML, XHTML markup, or plain text.

« With the same method, one can generate a tree using a EventDrivenBuilder (package net.xfra.qizx-
open.xquery.dm). Thistree can then be manipulated through the Node interface. Notice that according to
the "functional" approach used in X Path/XQuery/XSLT, the tree cannot be modified once built.

» Ancther possibility isto generatetheresult into aSAX interface, for exampleto passittoaXSLT processor.
Thisis conveniently achieved by using SAXXQueryProcessor, a subclass of XQueryProcessor.

« A third, more general way isto obtain the results as a Value, i.e. an Item sequence and enumerate the
items. Items can be Nodes or atomic values (like string, double, boolean etc.). Thisimpliesto check the
types of items and extract values appropriately through a set of specialized methods. This is more com-
plicated and generally not necessary.

Step-by-step illustration:

1.

Instantiate a XQueryProcessor, for example like this:
i mport net. xfra. qi zxopen. xquery. *;

XQuer yProcessor processor =
new XQuer yProcessor (nodul eBaseURlI, docunent BaseURl);

The parameters are base URIs (in String form) respectively for resolution of module and document relative
URIs. This constructor automatically creates a private ModuleManager and a private DocumentManager.

A XQueryProcessor can also be created from amaster X QueryProcessor, inheriting the Module Manager and
the Document Manager and default settings from the master. This can be convenient for server side applications
to share the same resources among different clients.

XQuer yProcessor processor = new XQueryProcessor(nasterProcessor);

Note: modules and queries are thread-safe and can be shared. Documents are read-only (this is implied by
the XQuery Data Model) and can also be shared without difficulty. However this capability has not yet been
tested extensively.

Setting static options: there are quite afew possible settings:

Qizx Programmer's Guide

» Predefine anamespace (prefix + URI) that is visible by compiled queries (method predefineNameSpace).

processor . predefi neNameSpace("nyns", "ny.uri");
Thisallowsto use the myns: prefix to designate the namespace, without declaring it explicitly in queries.

» Predefineaglobal variablevisible by compiled queries (method predefineGlobal): for example the command
line application predefines a variable $arguments of type xs:string* that collects the options passed on
the command line.

processor . predefi ned obal ("argunments", Type.STRI NG star);

» Register acollation, define the default collation.
» Define or redefine the ModuleManager: this can be useful if a different implementation is used.

« Define or redefine the DocumentManager: this can be useful if a different implementation is used.

Explicitly authorize Java classes to be used by the Java binding mechanism: thisis a security feature.

Compile a Query:

there are different variants of method X QueryProcessor.compileQuery. Basically it needs a piece of text (a
CharSequence, i.e. typically a String) which can also be read from a stream or aFile.

An URI must be specified for use by error message and traces. For afile or URL input this would typically
be the string value of the path or the URL.

A third parameter isaLog that is used for receiving messages. By default it writesto System.err and can be
redirected to a stream. It has overridable display methods for easier subclassing (for example display in a
GUI).

String querySource = " for $i in 1 to 3 return element E { attribute A{ $i } } ";
Log log = new Log(); // Wites on Systemerr by default
try {

Query query = processor.conpil eQuery(querySource, "<source>", log);

} céi;:h(XQuer yException e) {
: Ce

Exceptions can be raised on a syntax error (prevents further compilation) or by static analysis errors (at end
of compilation).

Setting run-time options:

Typicaly, global variables (declared external in queries) can be initialized here. Initial values specified in
gueries can also be overridden. The method initGlobal has different variants, according to the value passed.
An exception israised if the value does not match the declared type.

Initial values are part of the execution environment and do not affect compiled Queries which can be shared
by severa threads.

Other options: default output for function x:serialize, node or node sequence used for X Query function input(),
implicit timezone, message | og.

Executing a compiled query and exploit results:

a Direct seridization:

XM.Seri alizer serial = new XM.Serializer();
serial.setQutput(new FileWiter("out.xm"));

Qizx Programmer's Guide

seri al . set Opti on(" et hod", "xhtm");
serial .setOption("indent", "yes");

/1 ... other options can be set on the serializer...
processor. execut eQuery(query, serial);

b. Treebuilding:

Event Dri venBui | der buil der = new Event Dri venBui | der () ;
processor . execut eQuery(query, builder);
Node result = builder.crop();

c. SAX output: SAXXQueryProcessor implementstheinterface org.xml.sax.XM L Reader and can therefore
be used to build a SAX Source for use with APIS javax.xml transform: for example pipe a X Query exe-
cution with a XSLT transformation.

d. Get aVaue and enumerate ltems:

Val ue v = processor. execut eQuery(query);
while(v.next()) { // Wen next() returns true, an itemis available
i f(v.isNode()) {
Node n = v. asNode();
/1 use the Node interface to navigate in the subtree, extract
/] element names, attributes, string val ues...

}
el se {
I temlype type = v.getType(); // type of current item
if (type == Type. DOUBLE) ({
doubl e d = v. asDoubl e() ;
}
/1 use the different asX() nethods, according to the type
}

}
This approach requires a good knowledge of the API and is generally not needed.

Handle errors: execution can raise an Eval Exception. The message of the exception gives the reason for the
error. It is also possible to display the call trace:

try {
Val ue v = processor. execut eQuery(query);

} catch (Eval Exception ee) {
ee. print Stack(l og, 20);
}

Thestack traceis printed to aLog object. The second argument gives adepth maximum for thetrace (0 means
no maximum).

10

