o
"I’ITAN

Programmers' Technical Reference
Guide for the Java side of the TITAN
TTCN-3 Toolset

Krist6f Szabados, Adam Knapp

Version 11.1.0, 2025-05-28

Table of Contents

. About the Document

1.1. Purpose
1.2. Target Groups
1.3. Naming Convention

1.4. Typographical Conventions

. TTCN-3 Limitations in this Version
. TTCN-3 Language Extensions

3.1. TTCN-3 Preprocessing

3.2. Implicit Message Encoding
3.3. RAW Encoder and Decoder
3.4. TEXT Encoder and Decoder
3.5. XML Encoder and Decoder
3.6. JSON Encoder and Decoder
3.7. OER Encoder and Decoder
3.8. Build Consistency Checks
3.9. Negative Testing

3.10. Differences between the Java side runtime, the C side Load Test Runtime and the C side

Function Test Runtime

3.11. Profiling and code coverage

. Supported ASN.1 Constructs and Limitations

5. Compiling TTCN-3 and ASN.1 Modules

5.1. Build Options

5.2. Makefile Generator

5.3. The Compilation Process for TTCN-3 and ASN.1 Modules
5.4. Particularities of ASN.1 Modules

5.5. Using Component Relation Constraints from TTCN-3

. The Run-time Configuration File

. Code Coverage of TTCN-3 Modules
. The TTCN-3 Debugger

. Test Ports

9.1. Generating the Skeleton
9.2. Message-based Example
9.3. Procedure-based Example
9.4. Test Port Functions

9.5. Support of address Type
9.6. Provider Port Types

9.7. Tips and Tricks

9.8. Setting timestamps

D 1 U1 U1 U1 R R R N NN NN

© © 0 00 J o O

12
12
13
14
15
16
16
17
17
19
29
31
34
35

10. Logger Plug-ins 38

11. Encoding and Decoding 39
11.1. The Common API 39
11.2. BER 43
11.3. RAW 43
11.4. TEXT 46
11.5. XML Encoding (XER) 46
11.6. JSON 46
11.7. OER 49

12. Mapping TTCN-3 Data Types to Java Constructs 50
12.1. Mapping of Names and Identifiers 50
12.2. Modules 51
12.3. Predefined TTCN-3 Data Types 51
12.4. Compound Data Types 98
12.5. Predefined Functions 115
12.6. Using the Signature Classes 122

13. Tips & Troubleshooting 126
13.1. Type Aliasing 126
13.2. Using External Java Functions in TTCN-3 Test Suites 126
13.3. Logging in Test Ports or External Functions 128
13.4. Reusing Logged Values or Templates in TTCN-3 Code 132
13.5. Using the TTCN-3 Preprocessing Functionality 133
13.6. Error Recovery during Test Execution 134

14. References 135

15. Abbreviations 137

Abstract

This document describes detailed information on writing components of executable test suites for
the Java side of the TITAN TTCN-3 Toolset.

Copyright

Copyright (c) 2000-2025 Ericsson Telecom AB.

All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson should have no liability for any error or damage
of any kind resulting from the use of this document.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. About the Document

1.1. Purpose

The purpose of this document is to provide detailed information on writing components, for
example, test ports, and so on, for executable test suites, for the Java side of the TITAN TTCN-3
Toolset.

1.2. Target Groups

This document is intended for programmers of TTCN-3 test suites, using the prototype Java code
generator provided in the plugins, with information in addition to that provided in the TITAN User
Guide, API Technical Reference and Programmers' Technical Reference Guide. It is recommended
that the programmer reads the TITAN User Guide before reading this document.

1.3. Naming Convention

This document uses the expressions "C side" and "Java side" in relation to the TITAN TTCN-3 Toolset
and Test Executor.

C side is used to reference the "original" part of the TITAN TTCN-3 Toolset available from command
line. The compiler, makefile generator, the libraries users need to link their executables to during
build time.

Java side is used to reference the part of the TITAN TTCN-3 Toolset supporting compiling TTCN-3
and ASN.1 code into Java classes via Java source code and the runtime libraries needed for this
form of building.

1.4. Typographical Conventions
This document uses the following typographical conventions:

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
"+’ to represent key combinations. For example, Ctrl+Click

The character "/'is used to denote a menu and sub-menu sequence. For example, File / Open.

Monospaced font is used represent system elements such as command and parameter names,
program names, path names, URLS, directory names and code examples.

Bold monospaced font is used for commands that must be entered at the Command Line Interface
(CLD).

Chapter 2. TTCN-3 Limitations in this
Version

The present Test Executor is an implementation of TTCN-3 Core Language standard ([1]) with
support of ASN.1 ([3]). However, the TTCN-3 language constructs detailed in [27] are not supported
in the current version of the Test Executor on both the C and the Java side. The following list extend
that list, with the TTCN-3 language constructs that are not supported, in addition, in the current
version of the Java side of the Test Executor.

When applicable, the relevant clause of the standard text ([1]) is given within parentheses after
each limitation. The list of ASN.1 related limitations can be found in chapter 4.25.

* The update, interleave, label, goto statements are not yet supported. (19.7, 19.8, 20.4 and 22.3.1
in [1])
* The hostId predefined function is not yet supported.

* Additionally the @profiler.start, @profiler.stop, string2ttcn TITAN extensions are also not yet
supported on the Java side.

* The @profiler.running TITAN extension is also not supported.

* Concatenating template strings is not yet supported on the Java side.

The current version of the Java side of the Test Executor is just a prototype

WARNING
version. Please note that there might still be some changes in some of its APIs.

Chapter 3. TTCN-3 Language Extensions

The Test Executor supports several non-standard additions to TTCN-3 Core Language, as detailed in
[27], in order to improve its usability or provide backward compatibility with older versions.

The following list contains the TTCN-3 language extensions that are not yet supported by the Java
side of the Test Executor. The sections/features not listed here are supported.

3.1. TTCN-3 Preprocessing

Preprocessing of the TTCN-3 files with a C style preprocessor is supported by the Java side.

Contrary to the C side, on the Java side preprocessing is supported by an internal pre-processor.
That is the generated Java files will already have the pre-processable content pre-processed.

Parameterized macros are not supported on the Java side.

3.2. Implicit Message Encoding

Compared to the description in section 3.22 of [27] the Java side has 2 major differences: Only RAW
encoding is supported for now. The syntax to be used in Java differs slightly from the one used in
C++:

The TTCN-3 attribute errorbehavior (INCOMPL_ANY:ERROR), for example, instead of being mapped to
the following C++ statement

TTCN_EncDec::set_error_behavior (TTCN_EncDec::ET_INCOMPL_ANY,
TTCN_EncDec::EB_ERROR);

is mapped to the following Java statement

TTCN_EncDec.set_error_behavior (TTCN_EncDec.error_type.ET_INCOMPL_ANY,
TTCN_EncDec.error_behavior_type.EB_ERROR);

3.3. RAW Encoder and Decoder

The Java side supports the same RAW Encoder and Decoder features as the C side.

3.4. TEXT Encoder and Decoder

The TEXT Encoder and Decoder is not yet supported on the Java side.

3.5. XML Encoder and Decoder

The XML Encoder and Decoder is not yet supported on the Java side.

3.6. JSON Encoder and Decoder

The Java side supports the same RAW Encoder and Decoder features as the C side.

3.7. OER Encoder and Decoder

The OER Encoder and Decoder is not yet supported on the Java side.

3.8. Build Consistency Checks

Executable test suites are typically put together from many sources, some of which (test ports,
function libraries, etc.) are not written by the test writers themselves, but are developed
independently. Sometimes, a test suite requires an external component with a certain feature or
bug fix, or a certain minimum TITAN version. Building with a component which does not meet a
requirement, or an old TITAN version, typically results in malfunction during execution or cryptic
error messages during build. If version dependencies are specified explicitly, they can be checked
during build and the mismatches can be reported.

3.8.1. Version Information in TTCN-3 Files

TITAN allows test writers to specify that a certain TTCN-3 module requires a minimum version of
another TTCN-3 module or a minimum version of TITAN.

The Java side of the toolset provides the same features as the C side for TTCN-3 level checking of
consistency.

3.8.2. Consistency Check in the Generated Code

The java side offers different consistency checks compared to the C side, for the generated code.

When connecting to the Main Controller in parallel mode, TITAN verifies that the Main Controller
and the Java side binaries are of the exact same version of TITAN. This is done to ensure that, that
both sides use the same communication protocol.

What is not checked on the Java side or checked differently:

* There is no platform check as Java is platform independent.

* The Java runtime will check if it can execute the compiled code. Generally a Java runtime
should be able to execute any Java code built using an earlier Java version.

* During the compilation of the Java code, the Java compiler will check if it is able to compile all
parts of the code.

3.9. Negative Testing

Negative Testing is not yet supported on the Java side.

3.10. Differences between the Java side runtime, the C
side Load Test Runtime and the C side Function Test
Runtime

The Java side was based on the Load Test runtime of the C side. For now it has the same features
and limitations.

Please note, that based on the differences between Java and C++, the Java runtime should be treated
as its own version of the runtime, when preparing for future developments.

3.11. Profiling and code coverage

The Java side does not yet support profiling and code coverage measuring support directly.

For the time being we recommend using the tools built into Eclipse on the Java generated code (The
Java side projects also behave as normal Java projects for Eclipse tooling), or other tools provided
for Java.

Chapter 4. Supported ASN.1 Constructs and
Limitations

The following list contains the ASN.1 features that are not supported on the Java side, above the
limitations listed in [27] for the C side:

* BER Encoding and Decoding are not supported.

* subtypes are not checked.

* Charsymbols are not parsed

Chapter 5. Compiling TTCN-3 and ASN.1
Modules

You can translate your TTCN-3 and ASN.1 modules, located in TITAN Java projects, to Java source
code using the builder built into the Designer plugin.

This builder is automatically invoked, when the eclipse’s build command is selected on a project.
When the Build Automatically option is selected in the Project menu, eclipse automatically builds
the project, in the background, when a file is changed.

The TITAN provided builder will use all TTCN-3 and ASN.1 files from all folders that are not
excluded. The .java files are generated into the java_src folder of the project into a package
generated from the name of the project in this format: "org.eclipse.titan." + projectname +
".generated".

The usual and recommended suffix is .ttcen for TTCN-3 and .asn for ASN.1 source files, but it is not
stringent"’. For TTCN-3 and ASN.1 modules, the names of the output files are the same as the name
of the modules, except for the suffixes which are .java.

NOTE In the ASN.1 module names hyphens are replaced by underscore character.

If you have a modular test suite (the code located in several projects that
WARNING reference each other), to build a particular project you have to first build all
projects it references. This should be done automatically by eclipse.

5.1. Build Options

The options governing how a project is built can be set via right clicking on the project and
selecting Properties /| TITAN Java Project Properties and in the window that appears on the
TITAN / Flags sub-page.

The following options are supported:
» Disable RAW encoding (-r)
Disables the generation of RAW encoder/decoder routines for all TTCN-3 types.
* Disable attribute validation (-0)

Disables the validation of "with" attributes.

This option should only be used temporarily and only by people transferring
WARNING projects from other TTCN-3 tool vendors. As the attribute validation is turned
off, users will not be notified of invalid attributes, or errors within attributes.

* Add source line info for logging (-L)

Instructs the compiler to add source file and line number information into the generated code
to be included in the log during execution. This option is only a prerequisite for logging the
source code information. The run-time configuration file parameters OptionsSourceInfoFormat
and LogEntityName in [LOGGING] have also to be set appropriately. This feature can be useful for
finding the cause of dynamic test case errors in fresh TTCN3 code. Using this option enlarges the
size of the generated code a bit and reduces execution speed slightly; therefore it is not
recommended when the TTCN3 test suite is used for load generation.

* Allow 'omit"' in template value lists (legacy behavior) (-M)

Enforces legacy behavior when matching the value omit. Allows the use of the value omit in
template lists and complemented template lists, giving the user another way to declare
templates that match omitted fields. If set, an omitted field will match a template list, if the
value omit appears in the list, and it will match a complemented template list, if omit is not in
the list (the ifpresent attribute can still be used for matching omitted fields). This also affects
the ispresent operation and the present template restriction accordingly.

* Force the generation of Seof types (-F)

Forces the code generator to generate the full classes for record of and set of types. When
turned off, and the of type of the set of/record of type is a basic type, the generated code will
only refer to pre-generated classes in the runtime library, saving compilation time.

* Enable object oriented programming - 00P (-k)

Enable object oriented programming language elements. It is not working yet on Titan Java
Projects. Syntactic and semantic analyzer and java compiler do not support OOP yet.

5.2. Makefile Generator

The Java side of TITAN does not generate a Makefile as the build is governed by the built in tools of
Eclipse.

5.3. The Compilation Process for TTCN-3 and ASN.1
Modules

The Java side compilation is integrated into the Designer plug-in using it’s syntactic and semantic
checking features.

During their run both the Designer’s analysis and Java code generator’s progress can eb followed in
the Progress view of eclipse.

During its run, the Designer might also report some of its activities on the TITAN Debug Console like
the following.

On-the-fly analyzation of project bughunt started
**The project bughunt does not seem to need syntax check.
** Had to start checking at @ modules.
**On-the-fly semantic checking of projects (4 modules) took 1.04777E-4 seconds
Generating code for module ‘common'
Generating code for module ‘Bug'
re-Generated code for module ‘Bug'
Generating code for module ‘single_test'
Generating code for module ‘parallel_test’
Generated 4 Java files.
Generating code for single main
The whole analysis block took 0.0022510720000000002 seconds to complete

The activities leading to the compilation of the project can be grouped to 3 sets.

5.3.1. The initial analysis

First, the Designer reads the TTCN-3 and ASN.1 input files and performs syntax check according to
the BNF of TTCN-3 [1] (including the additions of [3]) or ASN.1 [4], [7], [8], [9]. The syntax errors are
reported in the Problems view with the appropriate location information. Whenever it is possible,
the Designer tries to recover from syntax errors and continue the analysis in order to detect further
errors.

Error recovery is not always successful and it might result in additional undesired
error messages when the parser gets out of synchronization. Therefore it is
recommended to study the first lines on the compiler’s error listings because the
error messages at the end are not always relevant.

NOTE

After the syntax check the Designer performs semantic analysis on TTCN-3 /ASN.1 module(s) and
verifies whether the various definitions and language elements are used in the appropriate way
according to the static semantics of TTCN-3 and ASN.1 languages. In addition to error messages the
Designer reports a warning when the corresponding definition is correct, but it might have
unwanted effects.

5.3.2. Subsequent analysis after change

Instead of repeating the analysis of the whole project always, the Designer is able to offer
incremental analysis. This means that after the first analysis, the semantic information gained from
the TTCN-3 and ASN.1 files is not deleted, but kept in the memory. So when users edit something in
the same project, the Designer only has to re-read that file, and repeat the semantic analysis on the
smallest set of semantic entities, that might be affected by the change. Reducing the length of
subsequent analysis duration times.

5.3.3. Actual Java code generation and Java compilation

After at least one analysis was done on a project, the Designer can generate a Java file, for each
module without errors, that contains the translated module. If the name of the input module is
MyModule (i.e.it begins with module MyModule), the name of the generated Java file will be

10

MyModule.java. Note that the name of the output file does NOT depend on the name of input file. In
ASN.1 module names the hyphens are converted to underscore characters (e.g. the Java code for My-
Asn-Module will be placed into My_Asn_Module.java). The Java files are generated into the "java_src"
folder of the project into a package generated from the name of the project in this format:
"org.eclipse.titan." + projectname + ".generated".

By default, the compiler generates the Java code for the input modules:

 that do not have any errors inside them
* and were not yet analyzed or the last change might have affected them
* and either do not already have a Java file generated for them, or the content of the file needs to

be updated.

This sophisticated methods allows to reduce the length of the build after a change, by minimizing
the amount of code re-analyzed, re-generated and re-compiled by Java.

Once the Designer’s built in Java code generator finishes, the Java compiler of Eclipse takes the
generated Java code and compiles them into .class files. Which can be used for execution inside
eclipse, or can be exported as jar files, to be executed from the command line.

When the compiler translates an ASN.1 module, the different ASN.1 types are mapped to TTCN-3
types as described in the table below.

Table 12. Mapping of ASN.1 types to TTCN-3 types

ASN.1 TTCN-3

Simple types

NULL —*

BOOLEAN boolean

INTEGER integer
ENUMERATED enumerated

REAL float

BIT STRING bitstring

OCTET STRING octetstring

OBJECT IDENTIFIER objid

RELATIVE-OID objid

string charstring

string 1 universal charstring
string § universal charstring
Compound types

CHOICE union

SEQUENCE record

11

ASN.1 TTCN-3

SET set
SEQUENCE OF record of
SET OF set of

* There is no corresponding TTCN-3 type
T IA5String, NumericString, PrintableString, VisibleString (ISO646String)
I GeneralString, GraphicString, TeletexString (T61String), VideotexString
§ BMPString, UniversalString, UTF8String

5.4. Particularities of ASN.1 Modules

The Designer performs the same checks on ASN.1 modules as the compiler, but does not yet have
support for BER encoding/decoding.

5.5. Using Component Relation Constraints from
TTCN-3

The Designer performs the same checks on ASN.1 modules as the compiler, but does not yet have
support for BER encoding/decoding.

[1] .ttcn3, or .asn1 suffixes are supported as well.

12

Chapter 6. The Run-time Configuration File

In general the Java side supports the exact same configuration file format and options in the same
way as the C side does, described in chapter 7 of [27]. There are some features, that are not yet
supported on the Java side:

* LoggerPlugins within the LOGGING section are not yet supported. The section is read correctly,
but such plugins are not loaded during runtime.

* EXTERNAL_COMMANDS section is not yet supported. The section is read correctly, but the
scripts set there will not be executed during runtime.

* In MAIN_CONTROLLER section the UnixSocketsEnabled feature is not supported. Java does not
seem to offer support for this feature.

* It is also not yet possible to configure the logging options dynamically.

On the C side, in the configuration file it is possible to use the %e Meta-character in the log file’s
name, to insert into it the name of the binary generating the log files. On the Java side this %e Meta-
character will represent the name of the project. This is because on the Java side the easiest and
fastest way to execute TITAN Java projects does not involve the generation of a "binary" to be
executed. As such in these situations the concept of the "name of the binary" does not exist.

13

Chapter 7. Code Coverage of TTCN-3 Modules

Measuring Code Coverage directly from TITAN is not yet supported on the Java side.

14

Chapter 8. The TTCN-3 Debugger

Debugging TTCN-3 directly from TITAN is not yet supported on the Java side.

15

Chapter 9. Test Ports

The Java source code generated by the Java code generator is protocol independent, that is, it does
not contain any device specific operations. To provide the connection between the executable test
suite and SUT, that is, the physical interface of the test equipment”, a so-called Test Port is needed.

The Test Port is a software library written in Java language, which is a part of the executable test
program. It maps the device specific operations to function calls specified in an API. This chapter
describes the Test Port API in details.

9.1. Generating the Skeleton

The functions of Test Ports must be written by the user who knows the interface between the
executable test suite and the test equipment. In order to make this development easier, Eclipse
features can be used to generate and update Test Port skeletons. A Test Port belongs to one certain
TTCN-3 port type, so the skeleton is generated based on port type definitions.

A Test Port consists of two parts. One part is generated automatically by the Java code generator,
and it is put into the generated Java code. The user has nothing to do with this part.

The other part is a Java class, which is written mainly by the user. This class can be found in a
separate Java file (their suffixes are .java). It is recommended to store this file in a folder separate
from the generated java files (for example called user_provided), so as it should not be deleted when
clearing the project. The name of the source files and the Java class have to be identical to the name
of the port type. And the Java class has to be located in the Java package whos name is generated as
org.eclipse.titan. + projectname + .user_provided. Please note that the name mapping rules
described in Mapping of Names and Identifiers also apply to these class and file names.

During the compilation, when the Java compiler encounters the usage of a Test Port that does not
yet has a user generated implementation, it will report an error in the generated code for missing
its import. Also offering Quick Fixes either by simply bringing the mouse cursor over the error
location, or by right clicking and selecting Quick Fix from the menu. Using the action that starts like
Create class 'MyMessagePort' in package - eclipse will automatically generate the class the user
needs. Once the class is create one should set its base class and right click in its body part selecting
the Source/Override\Implement Methods::+ to automatically generate a skeleton for the needed
functions.

If the list of message types/signatures of a TTCN-3 port type changes, the list of the Test Port class
member functions also needs to change. Java will report build error like "The typeXY must
implement the inherited abstract method...". In this case, the Override\Implement Methods::+ action
should be invoked again, to create the skeletons of the newly required functions.

If you have defined a TTCN-3 port type that you intend to use for internal communication only
(that is, for sending and receiving messages between TTCN-3 test components), you do not need to
generate and compile an empty Test Port skeleton for that port type. Adding the attribute with
{extension "internal"} to the port type definition in the TTCN-3 module disables the generation
and use of a Test Port for the port type.

16

In the following we introduce two port type definitions: one for a message based and another one
for a procedure based port. In our further examples we will refer to the test port skeletons
generated according to these definitions given within the project called MyProject and module
called MyModu'e.

9.2. Message-based Example

The definition of MyMessagePort:

type port MyMessagePort message
{

in octetstring;
out integer;
inout charstring;

¥
That is, the types integer and charstring can be sent, and octetstring and charstring can be received
on port MyMessagePort.

The initial Test Port file (that is, MyMessagePort.java) will look as follows:

package org.eclipse.titan.MyProject.user_provided;

import org.eclipse.titan.MyProject.generated.MyModule.MyMessagePort_BASE;
import org.eclipse.titan.runtime.core.TitanCharString;
import org.eclipse.titan.runtime.core.TitanInteger;

public class MyMessagePort extends MyMessagePort_BASE {

public MyMessagePort(final String name) {
super(name);

}

@0verride

protected void outgoing_send(TitanInteger send_par) {
// T0DO Auto-generated method stub

}

@0verride

protected void outgoing_send(TitanCharString send_par) {
// TODO Auto-generated method stub

}

9.3. Procedure-based Example

The definition of MyProcedurePort in module MyModule:

17

type port MyProcedurePort procedure
{

in inProc;
out outProc;
inout inoutProc;

+

The signature definitions are imported from a module called MyModule2, noblock is not used and
exceptions are used so that every member function of the port class is generated for this example.
If the keyword noblock is used the compiler will optimize code generation by not generating
outgoing reply, incoming reply member functions and their argument types. If the signature has no
exception outgoing raise, incoming exception member functions and related types will not be
generated.

The port type MyProcedurePort can handle call, getreply and catch operations referencing the
signatures outProc and inoutProc, and it can handle getcall, reply and raise operations referencing
the signatures inProc and inoutProc.

The initial Test Port file (that is, MyProcedurePort.java) will look as follows:

18

package org.eclipse.titan.MyProject.user_provided;

import org.eclipse.titan.MyProject.generated.MyModule.MyProcedurePort_BASE;
import org.eclipse.titan.MyProject.generated.MyModule2.inProc_reply;

import org.eclipse.titan.MyProject.generated.MyModule2.inoutProc_call;
import org.eclipse.titan.MyProject.generated.MyModule2.inoutProc_reply;
import org.eclipse.titan.MyProject.generated.MyModule2.outProc_call;

public class MyProcedurePort extends MyProcedurePort_BASE {

public MyProcedurePort(final String name) {
super(name);

}

@0verride

public void outgoing_call(outProc_call call_par) {
// TODO Auto-generated method stub

}

@0verride

public void outgoing_call(inoutProc_call call_par) {
// TODO Auto-generated method stub

}

@Override

public void outgoing_reply(inProc_reply reply_par) {
// T0DO Auto-generated method stub

}

@0verride

public void outgoing_reply(inoutProc_reply reply_par) {
// TODO Auto-generated method stub

}

9.4. Test Port Functions

This section summarizes all possible member functions of the Test Port class. These functions have
an empty implementation in the base class of the Test Port.

The identical functions of both port types are:

* the constructor
* the parameter setting function

* the map and unmap function

the start and stop function

* descriptor event and timeout handler(s)

19

» some additional functions and attributes

The functions above will be described using an example of message based ports (MyMessagePort, also
introducing the functions specific to message based port types). Using these functions is identical
(or very similar) in procedure based Test Ports.

Functions specific to message based ports:

* send functions: outgoing send
* incoming functions: incoming message
» Functions specific to procedure based ports:
» outgoing functions: outgoing_call, outgoing_reply, outgoing_raise
* incoming functions: incoming_call, incoming_reply, incoming_exception
Both test port types can use the same logging and error handling mechanism, and the handling of

incoming operations on port MyProcedurePort is similar to receiving messages on port MyMessagePort
(regarding the event handler).

The easiest way to discover what functions can be overwritten and to generate their
skeleton is by using the earlier described Override\Implement Methods::- functionality

NOTE
of eclipse. That functionality automatically list all functions from the class
generated for the given testport and the its parent classes, that can be overwritten.
Please note, that in Java functions by default inherit the documentation/comments
NOTE from the function they overwrite. So while the functions just inserted to overwrite

functions from the base class might not appear to have a comment, in eclipse
moving the cursor over their name will reveal their actual comment.

9.4.1. Constructor
NOTE On the Java side Test Ports do not have destructors.

The Test Port class belongs to a TTCN-3 port type, and its instances implement the functions of the
port instances. That is, each Test Port instance belongs to the port of a TTCN-3 test component. The
number of TTCN-3 component types, port types and port instances is not limited; you may have
several Test Port classes and several instances of a given Test Port class in one test suite.

The Test Port instances are global and static objects from the point of view of the Java code. This
means, their constructor is called before the test execution (that is, before the main function starts).
They are also stored as threadlocal to be only accessible by the thread (Parallel Test Component)
they belong to. The name of a Test Port object is composed of the name of the corresponding
component type and the name of the port instance within the component type.

In case of parallel test execution, each TTCN-3 test component thread has its own Test Port
instances. Of course, only the Test Ports of the active component type are used, the member
functions of other inactive Test Port instances (except constructor) shall never be called. All Test
Port instances should be handled as being static, their constructor is called only once, at the time

20

their component is created. The test component threads (that is, the child threads of Host
Controller) will have to create/initialize their own Test Port instances.

The Test Port class is derived from an abstract base class which can be found in the generated code.
The base class implements, for instance, the queue of incoming messages.

The constructor takes one parameter containing the name of the port instance in a String. This
string shall be passed further to the constructor of the base class as it can be found in the skeleton
code. The default argument for the test port name is a null pointer, which is used when the test port
object is a member of a port array.

In case of port arrays the name of the test port is set after the constructor is
completed. So the name of the test port should not be used in the constructor.
The port name is always set correctly when any other member function is
called.

WARNING

9.4.2. Parameter Setting Function

Test Port parameters shall contain information which is independent from the TTCN-3 test suite.
These values shall not be used in the test suite at all. You can define them as TTCN-3 constants or
module parameters, but these definitions are useless and redundant, and they must always be
present when the Test Port is used.

For instance, using Test Port parameters can be used to convey configuration data (that is, some
options or extra information that is necessary for correct operation) or lower protocol layer
addresses (for example, IP addresses).

Test Port parameters shall be specified by the user of executable tests in the [TESTPORT_PARAMETERS]
section of the run-time configuration file (see section [TESTPORT_PARAMETERS] in Programmer’s
Technical Reference). The parameters are maintained for each test port instance separately;
wildcards can be used as well. In the latter case the parameter is passed to all Test Port matching
the wildcard.

Each Test Port parameter must have a name, which must be unique within the Test Port only. The
name must be a valid identifier, that is, it must begin with a letter and must contain
alphanumerical characters only.

All Test Port parameter values are interpreted by the test executor as character strings. Quotation
marks must be used when specifying the parameter values in the configuration file. The
interpretation of parameter values is up to you: you can use some of them as symbolic values,
numbers, IP addresses or anything that you want.

Before the test execution begins, all parameters belonging to the Test Port are passed to the Test
Port by the runtime environment of the test executor using the function set_parameter. The default
implementation of this function does nothing and ignores all parameters.

Each parameter is passed to the Test Port one-by-one separately’”, the two arguments of

set_parameter contain the name and value of the corresponding parameter, respectively, in Strings.

It is warmly recommended that the Test Port parameter handling functions be fool-proof. For

21

https://gitlab.eclipse.org/eclipse/titan/titan.core/tree/master/usrguide/referenceguide
https://gitlab.eclipse.org/eclipse/titan/titan.core/tree/master/usrguide/referenceguide

instance, the Test Port should produce a proper error message (for example by calling TtcnError) if
a mandatory parameter is missing instead of causing unreliable behavior later. Repeated setting of
the same parameter should produce warnings for the user (for example by using the function
TtenError.TtenWarning) and not memory leaks.

On the MTC, in both single and parallel modes, the handling of Test Port parameters
is a bit different from that on PTCs. The parameters are passed only to active ports,
but the component type of MTC (thus the set of active ports) depends on the runs on
clause of the test case that is currently being executed. It would be difficult for the
runtime environment to check at the beginning of each test case whether the
corresponding MTC component type has already been active during a previous test
case run. Therefore all Test Port parameters belonging to the active ports of the MTC
are passed to the set_parameter function at the beginning of every test case. The Test
Ports of MTC shall be prepared to receive the same parameters several times (with
the same values, of course) if more than one test case is being executed.

NOTE

If system related Test Port parameters are used in the run-time configuration file (that is, the
keyword system is used as component identifier), the parameters are passed to your Test Port
during the execution of TTCN-3 map operations, but before calling your user_map function. Please
note that in this case the port identifier of the configuration file refers to the port of the test system
interface that your port is mapped to and not the name of your TTCN-3 port.

The name and exact meaning of all supported parameters must be specified in the user
documentation of the Test Port.

9.4.3. Map and Unmap Functions

The run-time environment of the TTCN-3 executor knows nothing about the communication
towards SUT, thus, it is the user’s responsibility to establish and terminate the connection with SUT.
The TTCN-3 language uses two operations to control these connections, map and unmap.

For this purpose, the Test Port class provides two member functions, user_map and user_unmap. These
functions are called by the test executor environment when performing TTCN-3 map and unmap
operations, respectively.

The map and unmap operations take two pairs of component references and ports as arguments.
These operations are correct only if one of the arguments refer to a port of a TTCN-3 test
component while the other port corresponds to SUT. This aspect of correctness is verified by the
run-time environment, but the existence of a system port is not checked.

The port names of the system are converted to Strings and passed to functions user_map and
user_unmap as parameters. Unlike other identifiers, the underscore characters in these port names
are not translated.

22

in TTCN-3 it is not allowed to map a test component port to several system ports at
the same time. The run-time environment, however, is not so strict and allows this
to handle transient states during configuration changes. In this case messages can

NOTE not be sent to SUT even with explicit addressing, but the reception of messages is
permitted. When putting messages into the input queue of the port, it is not
important for the test executor (even for the TTCN-3 language) which port of the
system the message is received from.

The execution of TTCN-3 test component that requested the mapping or unmapping is suspended
until your user_map or user_unmap functions finish. Therefore it is not allowed to block unnecessarily
the test execution within these functions.

When the Test Port detects an error situation during the establishment or termination of the
physical connection towards the SUT, the function TTCN_error shall be used to indicate the failure. If
the error occurs within user_map the run-time environment will assume that the connection with
SUT is not established thus it will not call user_unmap to destroy the mapping during the error
recovery procedure. If user_map fails, it is the Test Port writer’s responsibility to release all allocated
resources and bring the object variables into a stable state before calling TtcnError. Within
user_unmap the errors should be handled in a more robust way. After a minor failure it is better to
issue a warning and continue the connection termination instead of panicking. TtcnError shall be
called only to indicate critical errors. If user_unmap is interrupted with an error the run-time
environment assumes that the mapping has been terminated, that is, user_unmap will not be called
again.

if either user_map or user_unmap fails, the error is indicated on the initiator test
NOTE component as well; that is, the respective map or unmap operation will also fail and
error recovery procedure will start on that component.

Parameters of the Map and Unmap Functions

Parameters can be sent to the user_map and user_unmap functions from TTCN-3 code using the param
clause of the map and unmap operations.

The user_map and user_unmap functions have a parameter of type Map_Params, which contains the
string representations of the in and inout parameters of the map/unmap operation. The string
representations of out parameters are empty strings (as these are considered as being unbound at the
beginning of the map/unmap operation). After the user_map or user_unmap function ends and the
mapping/unmapping is concluded, the final values (string representations) of out and inout
parameters in the Map_Params object are sent back to the mapping/unmapping requestor.

The following member functions can be used to obtain or set data in the Map_Params object:

public int get_nof_params()

Returns the number of parameters in the object. This will either be zero (if the map or unmap
operation had no param clause) or the number of parameters specified in the system port type
definition’s map param or unmap param clause.

23

public TitanCharString get_param(final int index)

Returns the string representation of the parameter at index p_index. This method shall be used to
retrieve the values of in and inout parameters. The parameter indices start at 0. The order of the
parameters is the same as their order of declaration. Default values of parameters are
automatically set by the runtime environment before the user_map/user_unmap call. The string
representations retrieved with this function can be converted back to the parameter’s TTCN-3 type
with the predefined function string_to_ttcn.

public void set_param(final int index, final TitanCharString param)

Sets the string representation of the parameter at index p_index to the string p_param. This method
shall be used to set the final values of out and inout parameters. The string representation of a
TTCN-3 value can be obtained using the predefined function ttcn_to_string. If the final value of an
out or inout parameter is an empty string, then the variable used as parameter will remain
unchanged. Otherwise its new value will be calculated by applying string_to_ttcn on the string
value set in the user_map or user_unmap function (this could cause dynamic test case errors if the
string representation is invalid).

Usage example:

Port type:

type port MyPort message {

map param(in MyInParType in_par, inout MyInOutParType inout_par, out MyOutParType
out_par)

}

user_map function in port implementation:

24

@0verride
protected void user_map(final String system_port, final Map_Params params) {
if (params.get_nof_params() == @) {
// there were no map parameters

// do mapping

+ else {
// there were map parameters
// extract 'in' and 'out' parameters
MyInParType in_par = new MyInParType();
TitanCharString.string_to_ttcn(params.get_param(@), in_par);
MyInOutParType inout_par = new MyInQutParType();

TitanCharString.string_to_ttcn(params.get_param(1), inout_par);
MyOutParType out_par = new MyOutParType(); // remains unbound

// do mapping

// update 'out' and 'inout' parameters
params.set_param(1, TitanCharString.ttcn_to_string(inout_par));
params.set_param(2, TitanCharString.ttcn_to_string(out_par));
}
}

9.4.4. Start and Stop Functions

The Test Port class has two member functions: user_start and user_stop. These functions are called
when executing port start and port stop operations, respectively. The functions have no
parameters and return types.

These functions are called through a stub in the base class, which registers the current state of the
port (whether it is started or not). So user_start will never be called twice without calling user_stop
or vice versa.

All ports of test components are started implicitly immediately after creation. Operations put in a
user_start function must not be blocking the execution for a longer period. This not only hangs the
new PTC but the also component that performed the create operation (usually the MTC). All ports
are stopped at the end of test cases or at PTC termination, even if stop statements are missing.

In functions user_start and user_stop the device should be initialized or shut down towards SUT
(that is, the communications socket). Also the event handler should be installed or uninstalled (see
later).

9.4.5. Outgoing Operations

Outgoing operations are send (specific to message based ports); call, reply, and raise (specific to
procedure based ports).

25

Send Functions

The Test Port class has an overloaded function called outgoing_send for each outgoing message type.
This function will be called when a message is sent on the port and it should be routed to the
system (that is, SUT) according to the addressing semantics'” of TTCN-3. The messages (implicitly or
explicitly) addressed to other test components are handled inside the test executor; the Test Ports
have nothing to do with them. The function outgoing_send will be also called if the port has neither
connections nor mappings, but a message is sent on it.

The only parameter of outgoing_send contains a read-only reference to the message in the internal
data representation format of the test executor. The access methods for internal data types are
described in Predefined TTCN-3 Data Types. The test port writer should encode and send the
message towards SUT. For information on how to use the standard encoding functions like RAW,
please consult the earlier chapters of this document. Sending a message on a not started port causes
a dynamic test case error. In this case outgoing_send will not be called.

Call, Reply and Raise Functions

The procedure based Test Port class has overloaded functions called outgoing_call, outgoing_reply
and outgoing_raise for each call, reply and raise operations, respectively. One of these functions
will be called when a port-operation is addressing the system (that is, SUT using the to system
statement).

The only parameter of these functions is an internal representation of the signature parameters
(and possibly its return value) or the exceptions it may raise. The signature classes are described in
Using the Signature Classes.

9.4.6. Incoming Operations

Incoming operations are receive for incoming messages (specific to message based ports); call,
reply and raise for signatures (specific to procedure based ports).

Descriptor Event and Timeout Handlers

The handling of incoming messages (or operations) is more difficult than sending. The executable
test program has two states. In the first state, it executes the operations one by one as specified in
the test suite (for example, it evaluates expressions, calls functions, sends messages, etc.). In the
other state it waits for the response from SUT or for a timer to expire. This happens when the
execution reaches a blocking statement, that is, one of a stand-alone receive, done, timeout
statements or an alt construct.

After reaching a blocking statement, the test executor evaluates the current snapshot of its timer
and port queues and tries to match it with the reached statements and templates. If the matching
fails, the executor sleeps until something happens to its timers or ports. After waking up, it re-
evaluates its snapshot and tries to match it again. The last two steps are repeated until the executor
finds the first matching statement. If the test executor realizes that its snapshot can never match
the reached TTCN-3 statements, it causes a dynamic test case error. This mechanism prevents it
from infinite blocking.

The test executor handles its timers itself, but it does not know anything about the communication

26

with SUT. So each Test Port instance should inform the snapshot handler of the executor what kind
of event the Test Port is waiting for. The event can be either the reception of data on one or more
socket channels or a timeout (when polling is used) or both of them.

When the test executor reaches a blocking statement and any condition — for which the Test Port
waits — is fulfilled, the event handler will be called. First one has to get the incoming message or
operation from the operating system. After that, one has to decode it (and possibly decide its type).
Finally, if the internal data structure is built, one has to put it into the queue of the port. This can be
done using the member function incoming_message if it is a message, and using incoming_call,
incoming_reply or incoming_exception if it is an operation.

The execution must not be blocked in event handler functions; these must return immediately
when the message or operation processing is ready. In other words, always use non-blocking calls.
In the case when the messages are fragmented (for instance, when testing TCP based application
layer protocols, such as HTTP), intermediate buffering should be performed in the Test Port class.

Event and timeout handling interface

To be notified about available events the Handle_Event function has to be implemented.

public void Handle_Event(final SelectableChannel channel, final boolean is_readable,
final boolean is writeable);

Using Handle_Event allows receiving all events of a descriptor in one function call.

The first parameter in all of these functions is the selectable channel. The second is true if the
channel is readable. The third is true if it is writeable.

You can install or uninstall the event handler by calling the following inherited member functions:

protected void Install_Handler(final Set<SelectableChannel> read_channels, final
Set<SelectableChannel> write_channels, final double call_interval) throws IOException;
protected void Uninstall_Handler() throws IOException;

Install_Handler installs the event handler according to its parameters. It takes three arguments,
two sets of SelectableChannels and a timeout value. Some of the parameters can be ignored, but
ignoring all at the same time is not permitted.

read_channels is the set of SelectabeChannel to register the handler for reading. If null the handler
is not registered for any channel to handle reading. write_channels is the set of SelectabeChannel to
register the handler for writing. If null the handler is not registered for any channel to handle
writing.

The call interval value is measured in seconds. It means that the event handler function will be
called when the time elapsed since its last call reaches the given value. This parameter is ignored
when its value is set to zero or negative.

If you want to change your event handling parameters, you may simply call the function

27

Install_Handler again (calling of Uninstall_Handler is not necessary).

Uninstall_Handler will uninstall your previously installed event handler. The stop port operation
also uninstalls the event handler automatically. The event handler may be installed or uninstalled
in any Test Port member function, even in the event handler itself.

Receiving messages

The member function incoming_message of message based ports can be used to put an incoming
message in the queue of the port. There are different functions for each incoming message type.
These functions are inherited from the base class. The received messages are logged when they are

put into the queue and not when they are processed by the test suite”.

In our example the class MyMessagePort_BASE has the following member functions:

protected void incoming_message(final TitanOctetString incoming_par);
protected void incoming_message(final TitanCharString incoming_par);

Receiving calls, replies and exceptions

Receiving operations on procedure based ports is similar to receiving messages on message based
ports. The difference is that there are different overloaded incoming functions for call, reply and
raise operations called incoming_call, incoming_reply and incoming_exception, respectively. The
event handler (when called) must recognize the type of operation on receiving and call one of these
functions accordingly with one of the internal representations of the signature (see Additional Non-
Standard Functions).

In the example' the class MyProcedurePort_BASE has the following member functions for incoming
operations:

protected void incoming_call(final MyModule2.inProc_call incoming_par);

protected void incoming_call(final MyModule2.inoutProc_call incoming_par);

protected void incoming_reply(final MyModule2.outProc_reply incoming_par);

protected void incoming_reply(final MyModule2.inoutProc_reply incoming_par);
protected void incoming_exception(final MyModule2.outProc_exception incoming_par);
protected void incoming_exception(final MyModule2.inoutProc_exception incoming_par);

For example, if the event handler receives a call operation that refers to the signature called
inoutProc, it has to fill the parameters of an instance of the class inoutProc_call with the received
data. Then it has to call the function incoming_call with this object to place the operation into the
queue of the port.

The following table shows the relation between the direction of the message type or signature in
the port type definition and the incoming/outgoing functions that can be used. MyPort in the table
header refers to MyMessagePort or MyProcedurePort in the example depending on the type of the port
(message based or procedure based).

Table 1. Outgoing and incoming operations

28

12-mapping_ttcn3_data_types_to_java_constructs.adoc .pdf#additional-non-standard-functions
12-mapping_ttcn3_data_types_to_java_constructs.adoc .pdf#additional-non-standard-functions

MyPort.outgoing_ MyPort_BASE.incoming_

send call reply raise message call reply exceptio

n

in o o o o ° o o o
message out ® ¢) e} e} [¢) o o o

type

inout ° o o o ° o o o

in o) o) ° ° o ° o) o)
Slgnatur out)) e} o [¢) 0]))

e

inout o ° ° ° o ° ° °

e supported

o not supported

9.4.7. Additional Functions and Attributes

Any kind of attributes or member functions may be added to the Test Port. A selectable channel,
which you communicate on, is almost always necessary. Names not interfering with the identifiers
generated by the Java code generator can be used in the java file (for example, the names
containing one underscore character). Avoid using static variables because it can be very confusing
when more than one instances of the Test Port run simultaneously. Any kind of software libraries
may be used in the Test Port as well.

In addition, the following protected attributes of ancestor classes are available:

Table 2. Protected attributes

Name Type Meaning

is_active Indicates whether the Test Port
boolean is active.

is_started Indicates whether the Test Port
boolean is started.

is_halted Indicates whether the Test Port
boolean is halted.

port_name Contains the name of the Test

String

Port instance.

Underscore characters are not duplicated in port_name. In case of port array member instances the
name string looks like this: "Myport_array[5]".

9.5. Support of address Type

The special user-defined TTCN-3 type address can be used for addressing entities inside the SUT on
ports mapped to the system component. Since the majority of Test Ports does not need TTCN-3
addressing and in order to keep the Test Port API backward compatible the support of address type

29

is disabled by default. To enable addressing on a particular port type the extension attribute
"address" must be added to the TTCN-3 port type definition. In addition to component references
this extension will allow the usage of address values or variables in the to or from clauses and sender
redirects of port operations.

In order to use addressing, a type named address shall be defined in the same TTCN-3 module as
the corresponding port type. Address types defined in other modules of the test suite do not affect
the operation of the port type. It is possible to link several Test Ports that use different types for
addressing SUT into the same executable test suite.

Test Ports that support SUT addressing have a slightly different API, which is considered when
generating Test Port skeleton. This section summarizes only the differences from the normal API.

In the communication operations the test port author is responsible for handling the address
information associated with the message or the operation. In case of an incoming message or
operation the value of the received address will be stored in the port queue together with the
received message or operation.

The generated code for the port skeleton of message based ports will be the same, except
outgoing_send member function, which has an extra parameter pointing to an TitanAddress value.
With the example given in Test Port Functions:

void outgoing_send(final TitanInteger send_par, final TitanAddress
destination_address);

void outgoing_send(final TitanCharString send_par, final TitanAddress
destination_address);

when the type named address is defined as a synonym of an other type, these
NOTE functions could also report that type to be the type of the destination_address
formal parameter.

If an address value was specified in the to clause of the corresponding TTCN-3 send operation the
second argument of outgoing_send points to that value. Otherwise it is set to the NULL pointer. The
Test Port code shall be prepared to handle both cases.

The outgoing operations of procedure based ports are also generated in the same way if the address
extension is specified. These functions will also have an extra parameter. Based on our example,
these will have the following form:

30

void outgoing_call(final MyModule2.outProc_call call_par, final TitanAddress
destination_address);

void outgoing_call(final MyModule2.inoutProc_call call_par, final TitanAddress
destination_address);

void outgoing_reply(final MyModule2.inProc_reply reply_par, final TitanAddress
destination_address);

void outgoing_reply(final MyModule2.inoutProc_reply reply_par, final TitanAddress
destination_address);

void outgoing_raise(final MyModule2.inProc_exception raise_exception, final
TitanAddress destination_address);

void outgoing_raise(final MyModule2.inoutProc_exception raise_exception, final
TitanAddress destination_address);

The other difference is in the incoming_message member function of class MyMessagePort_BASE, and in
the incoming member functions of class MyProcedurePort_BASE. These have an extra parameter,
which is a pointer to an TitanAddress value. The version of the function that does not have this
formal parameter, will call this function with a null value passed as the sender_address. In our
example of MyMessagePort_BASE

void incoming_call(final MyModule2.inProc_call incoming_par, final int
sender_component, final TitanAddress sender_address);

void incoming_call(final MyModule2.inoutProc_call incoming_par, final int
sender_component, final TitanAddress sender_address);

void incoming_reply(final MyModule2.outProc_reply incoming_par, final int
sender_component, final TitanAddress sender_address)

void incoming_reply(final MyModule2.inoutProc_reply incoming_par, final int
sender_component, final TitanAddress sender_address)

void incoming_exception(final MyModule2.outProc_exception incoming_par, final int
sender_component, final TitanAddress sender_address)

void incoming_exception(final MyModule2.inoutProc_exception incoming_par, final int
sender_component, final TitanAddress sender_address)

If the event handler of the Test Port can determine the source address where the message or the
operation is coming from, it shall pass a pointer to the incoming function, which points to a
variable that stores the address value. The given address value is not modified by the run-time
environment and a copy of it is created when the message or the operation is appended to the port
queue. If the event handler is unable to determine the sender address the default null value shall
be passed as the argument.

The address value stored in the port queue is used in receive, trigger, getcall, getreply, catch and
check port operations: it is matched with the from clause and/or stored into the variable given in the
sender redirect. If the receiving operation wants to use the address information of the first element
in the port queue, but the Test Port has not supplied it a dynamic testcase error will occur.

9.6. Provider Port Types

Test Ports that belong to port types marked with extension attribute "provider" have a slightly

31

different API. Such port types are used to realize dual-faced ports, the details of which can be found
in section "Dual-faced ports" in the Programmer’s Technical Reference.

The purpose of this API is to allow the re-use of the Test Port class with other port types marked
with attribute user or with ports with translation capability (Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Configuration
and Deployment Support). The user port types may have different lists of incoming and outgoing
message types. The transformations between incoming and outgoing messages, which are specified
entirely by the attribute of the user port type, are done independently of the Test Port. The Test Port
needs to support the sending and reception of message types that are listed in the provider port

type.

The provider port can be accessed through the port which maps to the port with provider attribute.
The get_provider_port() is a member function of the TitanPort class:

TitanPort get_provider_port();

This function is useful when a reference to the provider type is needed. It returns the provider port
type for user ports and ports with translation capability. Otherwise returns null. The function
causes dynamic testcase error when the port has more than one mapping, or the port has both
mappings and connections. The function’s return value must be manually cast to the correct
provider port type.

This section summarizes only the differences from the normal Test Port API:
* The name of the Test Port class is suffixed with the string _PROVIDER (for example

MyMessagePort_PROVIDER instead of MyMessagePort).

» The base class of the Test Port is class TitanPort, which is part of the Base Library. Please note
that normal Test Ports are also derived from class TitanPort, but indirectly through an
intermediate class with suffix BASE.

* The member functions that handle incoming messages and procedure-based operations (that is
incoming_message, incoming_call, incoming_reply and incoming_exception) must be defined as
override-able functions. These functions will be implemented in various descendant classes
differently.

* The member functions of the Test Port may refer to Java classes that are generated from user-
defined message types and signatures.

The following example shows the skeleton of a provider port type Test Port.

Port type definition in TTCN-3 :

type port MyProviderPort mixed {
inout MyMessage, MySignature;
} with { extension "provider" }

Source file MyProviderPort_PROVIDER. java:

32

https://gitlab.eclipse.org/eclipse/titan/titan.core/tree/master/usrguide/referenceguide
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf

package org.eclipse.titan.MyProject.user_provided;
import java.nio.channels.SelectableChannel;

import org.eclipse.titan.MyProject.generated.MyModule.MyMessage;

import org.eclipse.titan.MyProject.generated.MyModule.MySignature_call;
import org.eclipse.titan.MyProject.generated.MyModule.MySignature_exception;
import org.eclipse.titan.MyProject.generated.MyModule.MySignature_reply;
import org.eclipse.titan.runtime.core.TitanPort;

public class MyProviderPort_PROVIDER extends TitanPort {

public MyProviderPort_PROVIDER() {
super();

}

public MyProviderPort_PROVIDER(final String name) {
super(name);

}

@0verride
public void set_parameter(final String parameter_name, final String
parameter_value) {

}

@0verride
public void Handle_Event(final SelectableChannel channel, final boolean
is_readable,
final boolean is_writeable) {

}

@0verride
protected void user_map(final String system_port, final Map_Params params) {

}

@0verride
protected void user_unmap(final String system_port, final Map_Params params) {

}

@Override
protected void user_start() {

}

@0verride
protected void user_stop() {

}

public void outgoing_send(final MyMessage send_par) {

}
public void outgoing_call(final MySignature_call call_par) {

}

33

public void outgoing_reply(final MySignature_reply reply_par) {
}

public void outgoing_raise(final MySignature_exception raise_Exception) {

}

9.7. Tips and Tricks

The following sections deal with logging and error handling in Test Ports.

9.7.1. Logging

Test Ports may record important events in the Test Executor log during sending/receiving or
encoding/decoding messages. Such log messages are also good for debugging fresh code.

The Test Port member functions may call the functions of class TTCN_Logger. These functions are
detailed in Logging in Test Ports or External Functions.

If there are many points in the Test Port code that want to log something, it can be a good practice
to write a common log function in the Test Port class. We show here an example where the calling
of log uses Java’s MessageFormat.format to create a custom message, and inside the log function
TTCN_Logger.log_event demonstrates logging using the standard C function printf style and
forwards the message to the Test Executor’s logger:

private void value_logging(final TitanInteger i) {
log(MessageFormat.format("The value of i : {0}.", i.get_int()));

}

private void log(final String content) {
TTCN_Logger.begin_event(Severity.DEBUG_USER);
TTCN_Logger.log_event("Example Test Port (%s): ", get_name());
TTCN_Logger.log_event_str(content);
TTCN_Logger.end_event();

}

9.7.2. Error Handling

None of the Test Port member functions have return value like a status code. If a function returns
normally, the run-time environment assumes that it has performed its task successfully. The
handling of run-time errors is done using Java exceptions. This simplifies the program code
because the return values do not have to be checked everywhere and dynamically created complex
error messages can be used if necessary.

If any kind of fatal error is encountered anywhere in the Test Port, an exception of type TtcnError
should be thrown:

34

13-tips_&_troubleshooting.pdf#logging-in-test-ports-or-external-functions

throw new TtcnError(errorMessage);

Its parameter should contain the description of the error in a String. The exception is usually
caught at the end of the test case or PTC function that is being executed. In case of error, the verdict
of the component is set to error and the execution of the test case or PTC function terminates
immediately.

The error string is written into the log file by TtcnError immediately. Such type of exception should
never be caught or thrown directly. If you want to implement your own error handling and error
recovery routines you had better use your own classes as exceptions.

If you write your own error reporting function you can add automatically the name of the port
instance to all of your error messages. This makes the fault analysis for the end-users easier. In the
following example the error message will occupy two consecutive lines in the log since we can pass
only one format string to TtcenError.

private void error(final String content) {
TTCN_Logger.begin_event(Severity.ERROR_UNQUALIFIED);
TTCN_Logger.log_event("Example Test Port (%s): ", get_name());
TTCN_Logger.log_event_str(content);
TTCN_Logger.end_event();
throw new TtenError(MessageFormat.format("Fatal error in Example Test Port {0}
(see above).", get_name()));

}

There is another function for denoting warnings (that is, events that are not so critical) with the
same parameter list as TtcnError:

void TtcnError.TtcnWarning(warningMessage);

This function puts an entry in the executor’s log with severity TTCN_WARNING. In contrast to TtenError,
after logging the given message TtcnWarning returns and your test port can continue running.

9.8. Setting timestamps

In order to use the timestamp redirects (+ timestamp) described in chapter 5 of the TTCN-3 standard
extension TTCN-3 Performance and Real Time Testing (ETSI ES 202 782 V1.3.1, [16]) the test port
writer needs to add extra code to set the timestamps for the incoming and outgoing port operations
of each port with the realtime clause.

9.8.1. Incoming operations

The timestamps of incoming port operations (receive, trigger, getcall, getreply, catch and check)
need to be set when the incoming message or procedure is added to the queue.

The member functions incoming_message, incoming_call, incoming_reply and incoming_exception

35

(which add the message/procedure to the queue) have an optional TitanFloat parameter called
timestamp, if the test port was declared with the realtime clause.

The value given to this parameter will be the one stored in the variable referenced in the
timestamp redirect, if the operation has a timestamp redirect (otherwise the value is ignored).

It is recommended that this parameter be set to the current test system time, which can be queried
with TTCN_Runtime.now();, or to a float variable that was set to the current test system time earlier in
the function.

Examples:

incoming_message(my_message, TTCN_Runtime.now());

TitanFloat reply_time = TTCN_Runtime.now();

incoming_reply(my_reply, reply_time);

9.8.2. Outgoing operations

The timestamps of outgoing port operations (send, call, reply, raise) need to be set in the member
functions outgoing_send, outgoing_call, outgoing_reply and outgoing_raise.

These functions have a TitanFloat pointer parameter called timestamp_redirect, if the test port was
declared with the realtime clause.

The value pointed to by this parameter will be the one stored in the variable referenced in the
timestamp redirect, if the operation has a timestamp redirect.

If it does not have a timestamp redirect, then this value parameter will be null. Because of this, the
parameter must always have a null check before it is assigned a value.

It is recommended that the value pointed to by the parameter be set to the current test system time,
which can be queried with TTCN_Runtime.now().

Example:

if (timestamp_redirect != null) {
timestamp_redirect.operator_assign(TTCN_Runtime.now());

}

36

Because of this extra parameter, adding or removing the realtime clause from a port
will cause already-written Java code for the port to no longer compile. In these cases
the new parameters must be manually added or removed from the mentioned
functions.

NOTE

[2] The test equipment not necessarily requires a special hardware; it can even be a simple PC with an Ethernet interface.

[3] If the same parameter of the same port instance is specified several times in the configuration file, the function set_parameter
will also be called several times.

[4] That is, the port has exactly one mapping and either the port has no connections or the message is explicitly addressed by a send
(++) to system statement.

[5] Note that if the port has connections as well, the messages coming from other test components will also be inserted into the
same queue independently from the event handler.

[6] In the example the signatures were defined in a different TTCN-3 module named MyModule2, as a consequence all types
defined in that module must be prefixed with the Java name of that module and its class be imported.

37

Chapter 10. Logger Plug-ins

The Logger Plug-ins feature is not yet supported on the Java side.

38

Chapter 11. Encoding and Decoding

TITAN is equipped with several standard encoding/decoding mechanisms. A part of these functions
reside in the core library, but the type-dependent part must be generated by the Java code
generator. In order to reduce the code size and compilation time, the code generation for encoding
functions (separately for different encoders) can be switched off if they are not needed as described
in Build Options.

To make it easier to use the encoding features, a unified common API was developed. With help of
this API the behaviour of the test executor in different error situations can be set during coding.
There is also a common buffer class. The details of the above mentioned API as well as the specific
features of the certain encoders are explained in the following sections.

11.1. The Common API

The common API for encoders consists of three main parts:

* A dummy class named TTCN_EncDec which encapsulates functions regarding error handling.

* A buffer class named TTCN_Buffer which is used by the encoders to put data in, decoders to get
data from.

e The functions needed to encode and decode values.

11.1.1. TTCN_EncDec

TTCN_EncDec implements error handling functions.

Setting Error Behavior

There are lot of error situations during encoding and decoding. The coding functions can be told
what to do if an error arises. To set the behaviour of test executor in a certain error situation the
following function is to be invoked from the TTCN_EncDec class:

static void set_error_behavior(final error_type p_et, final error_behavior_type p_eb);

As error_type and error_behavior_type are enums defined in TTCN_EncDec
WARNING class, they have to prefixed with the class name (that is TTCN_EncDec.). An
example usage:

TTCN_EncDec.set_error_behavior (TTCN_EncDec.error_type.ET_ALL,
TTCN_EncDec.error_behavior_type.EB_DEFAULT);

The possible values of error_type are detailed in the sections describing the different codings. Some
common error types are shown in the table below:

Table 3. Common error types

39

ET_UNDEF
ET_UNBOUND
ET_REPR

ET_ENC_ENUM
ET_DEC_ENUM
ET_INCOMPL_MSG
ET_INVAL MSG
ET_CONSTRAINT
ET_INTERNAL
ET_ALL

ET_NONE

Undefined/unknown error.
Encoding of an unbound value.

Representation error (for example, internal representation of
integral numbers).

Encoding of an unknown enumerated value.

Decoding of an unknown enumerated value.

Decode error: incomplete message.

Decode error: invalid message.

The value breaks some constraint.

Internal error. Error behaviour cannot be set for this.
All error type. Usable only when setting error behaviour.

No error.

The possible values of error_behavior_type are shown in the table below:

Table 4. Possible values of error_behavior_t

EB_DEFAULT
EB_ERROR
EB_WARNING
EB_IGNORE

Getting Error Behavior

There are two functions: one for getting the current setting and one for getting the default setting

Sets the default error behaviour for the selected error type.
Raises an error if the selected error type occurs.
Gives a warning message but tries to continue the operation.

Like warning but without the message.

for a particular error situation.

static error_behavior_type get_error_behavior(final error_type p_et)
static error_behavior_type get_default_error_behavior(final error_type p_et)

The using of these functions are straightforward: giving a particular error_type the function

returns the current or default error_behavior_type for that error situation, respectively.

Checking if an Error Occurred

The last coding-related error and its textual description can be retrieved anytime. Before using a
coding function, it is advisable to clear the "last error". This can be achieved by the following
method:

static void clear_error();

After using some coding functions, it can be checked if an error occurred with this function:

40

static error_type get_last_error_type();

This returns the last error, or ET_NONE if there was no error. The string representation of the error
can be requested with the help of this:

static String get_error_str();

WARNING The above two functions do not clear the "last error" flag.

11.1.2. TTCN_Buffer

TTCN Buffer objects are used to store encoded values and to communicate with the coding
functions. If encoding a value, the result will be put in a buffer, from which can be get. In the other
hand, to decode a value, the encoded octet string must be put in a TTCN_Buffer object, and the
decoding functions get their input from that.

void clear();

Resets the buffer, cleaning up its content, setting the pointers to the beginning of buffer.

void rewind();

Rewinds the buffer, that is, sets its reading pointer to the beginning of the buffer.

int get_pos();

Returns the (reading) position of the buffer.

void set_pos(final int new_pos);

Sets the (reading) position to pos, or to the end of buffer, if pos > get_len().

int get_len();

Returns the amount of bytes in the buffer.

char[] get_data();

Returns a copy of the buffer starting from its start. You can read out count bytes beginning from this
address, where count is the value returned by the get_len() member function.

41

int get_read_len();

Returns how many bytes are in the buffer to read.

char[] get_read_data();

Returns a copy of the buffer starting from the read position of data. count bytes can be read out
beginning from this address, where count is the value returned by the get_read_len() member
function.

void put_c(final char c);

Appends the byte c to the end of buffer.

void put_s(final char[] cstr);

Writes a string of bytes to the end of buffer.

void put_os(final TitanOctetString p_os);

Appends the content of the octet string to the buffer.

void increase_length(final int size_incr);

Increases the size of the buffer.

void cut();

Cuts (removes) the bytes between the beginning of the buffer and the read position. After calling
this, the read position will be the beginning of buffer. As this function manipulates the internal
data, pointers referencing to data inside the buffer will be invalid.

void cut_end();

Cuts (removes) the bytes between the read position and the end of the buffer. After calling this, the
read position remains unchanged (that is, it will point to the end of the truncated buffer). As this
function manipulates the internal data, pointers referencing to data inside the buffer will be
invalid.

42

11.1.3. Invoking the Coding Functions

Every type class has members like these:

public void encode(final TTCN_Typedescriptor p_td, final TTCN_Buffer p_buf,
final coding_type p_coding, final int flavour);

public void decode(final TTCN_Typedescriptor p_td,
final TTCN_Buffer p_buf, final coding_type p_coding, final int flavour);

Parameter p_td is a special type descriptor. Each type has its own descriptor, which contains the
name of the type, and a lot of information used by the different encoding mechanisms. The names
of the descriptors come from the name of the types: the appropriate type descriptor for type XXX is
XXX_descr_. This descriptor can be found in the generated code:

» complex types (record, set, record of, set of, arrays, etc..): generated into the body of the class
representing the type.

* types for which no code is generated (for example record of integer): generated into the body of
the class representing the module of the type.

* built in types (for example integer): in the body of the classes representing the type (for
example TitanInteger in the runtime).

Parameter p_buf contains the encoded value. For details about using it, please consult the previous
subsection.

Parameter p_coding is the desired coding mechanism. As coding_type is defined in TTCN_EncDec, its
value must be prefixed with TTCN_EncDec.. For the time being, this parameter may have one of the
following values'”:

* CT_RAW - RAW coding;
* CT_JSON - JSON coding;

The flavour parameter is depending on the chosen coding.

11.2. BER

BER encoding and decoding is not yet supported on the Java side.

11.3. RAW

You can use the encoding rules defined in the section "RAW encoder and decoder" in the
Programmer’s Technical Reference to encode and decode the following TTCN-3 types:

* boolean
* integer
» float

* bitstring

43

https://gitlab.eclipse.org/eclipse/titan/titan.core/tree/master/usrguide/referenceguide

* octetstring

* charstring

* hexstring

* enumerated

* record

* set

* union

* record of

* set of
The compiler will produce code capable of RAW encoding/decoding for compound types if they
have at least one variant attribute.
When a compound type is only used internally or it is never RAW encoded/decoded then the

attribute variant has to be omitted.
When a type can be RAW encoded/decoded but with default specification then the empty variant

specification can be used: variant "".

11.3.1. Error Situations

Table 5. RAW-coding errors

ET_LEN_ERR During encoding: Not enough length specified in FIELDLENGTH to
encode the value. During decoding: the received message is shorter
than expected.

ET_SIGN_ERR Unsigned encoding of a negative number.

ET_FLOAT_NAN Not a Number float value has been received.

ET_FLOAT_TR The float value will be truncated during double to single precision
conversion.

11.3.2. API

The Java Application Programming Interface for RAW encoding and decoding is described in the
following. It can be used for example in test port implementation, in external function
implementation.

Encoding

public void encode(final TTCN_Typedescriptor p_td, final TTCN_Buffer p_buf,
final coding_type p_coding, final int flavour);

The parameter p_coding must be set to TTCN_EncDec.CT_RAW.

44

Decoding

public void decode(final TTCN_Typedescriptor p_td,
final TTCN_Buffer p_buf, final coding_type p_coding, final int flavour);

The parameter p_coding must be set to TTCN_EncDec.CT_RAW.

11.3.3. Example

Let us assume that we have a TTCN-3 module which contains a type named ProtocolPdu, and this
module contains also two ports:

type port MyPort1 message
{

out ProtocolPdu;

in octetstring;

}

type port MyPort2 message
{

out octetstring;

in ProtocolPdu;

}

Then we can complete the port skeleton generated by the compiler as follows:

protected void outgoing_send(final ProtocolPdu send_par) {
final TTCN_Buffer buffer = new TTCN_Buffer();
send_par.encode(MyModule.ProtocolPdu.ProtocolPdu_descr_, buffer,
TTCN_EncDec.coding_type.CT_RAW, 0);
final TitanOctetString encodedData = new TitanOctetString();
buffer.get_string(encodedData);
incoming_message(encodedData);

}

protected void outgoing_send(final TitanOctetString send_par) {
TTCN_EncDec.set_error_behavior (TTCN_EncDec.error_type.ET_ALL,
TTCN_EncDec.error_behavior_type.EB_WARNING);
final TTCN_Buffer buffer = new TTCN_Buffer();
buffer.put_os(send_par);
final ProtocolPdu pdu = new ProtocolPdu();
pdu.decode(MyModule.ProtocolPdu.ProtocolPdu_descr_, buffer,
TTCN_EncDec.coding_type.CT_RAW, 0);
incoming_message(pdu);

}

45

11.4. TEXT

TEXT encoding and decoding is not yet supported on the Java side.

11.5. XML Encoding (XER)

XML encoding and decoding is not yet supported on the Java side.

11.6. JSON

The encoding rules defined in the section "JSON Encoder and Decoder" of the Programmer’s
Technical Reference can be used to encode and decode the following TTCN-3 types:

* anytype

* array

* bitstring

* boolean

* charstring

* enumerated

* float

* hexstring

* integer

* objid

* octetstring

e record ', set

e record of’, set of
* union

* universal charstring

* verdicttype
The rules also apply to the following ASN.1 types (if imported to a TTCN-3 module):

« ANY

BIT STRING

BOOLEAN

BMPString

CHOICE, open type (in instances of parameterized types)

ENUMERATED

* GeneralString

46

https://gitlab.eclipse.org/eclipse/titan/titan.core/tree/master/usrguide/referenceguide
https://gitlab.eclipse.org/eclipse/titan/titan.core/tree/master/usrguide/referenceguide

* GraphicString

» IA5String

* INTEGER

* NULL

* NumericString

* OBJECT IDENTIFIER

* OCTET STRING

* PrintableString

* RELATIVE "-OID

* SEQUENCE, SET

 SEQUENCE OF, SET OF

* TeletexString

* UniversalString

» UTF8String

* VideotexString

* VisibleString
The compiler will produce code capable of JSON encoding/decoding for compound types if they
have at least one JSON variant attribute or the encode "JSON" attribute (and, for compound types, all

fields and elements of compound types also have a JSON variant attribute or the encode "JSON"
attribute).

The encoder and the decoder work with JSON data encoded in UTF-8 (described in UTF-8, a
transformation format of ISO 10646), stored in an object of type TTCN_Buffer. Although the contents
of this object can be retrieved (using the overloads of the get_string function) as an instance of
TitanOctetString, TitanCharString or TitanUniversalCharString, it is recommended to use only the
TitanOctetString representation. TitanCharString is not recommended, because UTF-8 is an 8-bit
encoding so the buffer may contain bytes with values over 127, which are not valid characters for a
TTCN-3 charstring (which is implemented by TitanCharString, see Charstring).
TitanUniversalCharString must not be used because its internal representation is not UTF-8.

11.6.1. Error Situations

There are no extra error situations apart from the ones in The Common API.

11.6.2. API

The Application Programming Interface for JSON encoding and decoding is described in the
following.

Encoding

47

https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
5-mapping_ttcn3_data_types_to_c+\+_constructs.pdf#Charstring

void encode(final TTCN_Typedescriptor p_td, final TTCN_Buffer p_buf,
final coding_type p_coding, final int flavour) const;

The parameter p_coding must be set to TTCN_EncDec.CT_JSON.

Decoding

void decode(final TTCN_Typedescriptor p_td, final TTCN_Buffer p_buf,
final coding_type p_coding, final int flavour);

The parameter p_coding must be set to TTCN_EncDec.CT_JSON.

11.6.3. Example

Let us assume that we have a TTCN-3 module which contains a type named ProtocolPdu, and this
module also contains two ports:

type port MyPort1 message
{

out ProtocolPdu;
in octetstring;

}

type port MyPort2 message
{

out octetstring;
in ProtocolPdu;

}

Then we can complete the port skeleton generated by the compiler:

48

void MyPort1.outgoing_send(final ProtocolPdu send_par)
{
final TTCN Buffer buffer = new TTCN Buffer();
send_par.encode(MyModule.ProtocolPdu.ProtocolPdu_descr_, buffer,
TTCN_EncDec.coding_type.CT_JSON, 0);
final TitanOctetString encodedData = new TitanOctetString();
buffer.get_string(encodedData);
incoming_message(encodedData);

}

void MyPort2.outgoing_send(final TitanOctetString send_par)
{
TTCN_EncDec.set_error_behavior (TTCN_EncDec.error_type.ET_ALL,
TTCN_EncDec.error_behavior_type.EB_WARNING);
final TTCN Buffer buffer = new TTCN Buffer();
buffer.put_os(send_par);
final ProtocolPdu pdu = new ProtocolPdu();
pdu.decode(MyModule.ProtocolPdu.ProtocolPdu_descr_, buffer,
TTCN_EncDec.coding_type.CT_JSON, 0);
incoming_message(pdu);

}

11.7. OER

OER encoding and decoding is not yet supported on the Java side.

[7]1 BER, TEXT, XER and OER coding is not yet supported

Chapter 12. Mapping TTCN-3 Data Types to
Java Constructs

On the Java side the TTCN-3 language elements of the test suite are individually mapped into more
or less equivalent Java constructs. The data types are mapped to Java classes, the test cases become
Java functions, and so on. In order to write a Test Port, it is inevitable to be familiar with the
internal representation format of TTCN-3 data types and values. This section gives an overview
about the data types and their equivalent Java constructs.

12.1. Mapping of Names and Identifiers

In order to identify the TTCN-3 language elements in the generated Java program properly, the
names of test suite are translated to Java identifiers according to the following simple rules.

If the TTCN-3 identifier does not contain any underscore () character, its equivalent Java identifier
will be the same. For example, the TTCN-3 variable MyVar will be translated to a Java variable called
MyVar.

If the TTCN-3 identifier contains one or more underscore characters, each underscore character
will be duplicated in the Java identifier. So the TTCN-3 identifier My_Long_Name will be mapped to a
Java identifier called My__Long__Name.

The idea behind this name mapping is that we may freely use the Java identifiers containing one
underscore character in the generated code and in the Test Ports as well. Otherwise name clashes
might happen (and to keep in line with the C++ side of the toolset and its already existing large
amount of code). Furthermore, the generated Java language elements fulfill the condition that the
scope of a translated Java identifier is identical as the scope of the original TTCN-3 identifier.

The identifiers that are keywords of Java but not keywords in TTCN-3 are mapped to themselves,
but a single underscore character is appended at the end (for example for becomes for_). The same
rule applies to the all-uppercase identifiers that are used in the Base Library: identifier
TitanInteger in TTCN-3 becomes TitanInteger_ in Java, TRUE ' is mapped to TRUE_, etc.

FIXME update list of words Here is the complete list (in alphabetical order) of the identifiers that
are handled in such special way:asm, auto, bitand, bitor, bool, break, case, class, compl, continue,
delete, double, enum, explicit, export, friend, inline, int, ischosen, long, main, mutable, namespace,
new, operator, private, protected, public, register, short, signed, static, stderr, stdin, stdout, struct,
switch, this, throw, try, typedef, typeid, typename, unsigned, using, virtual, void, volatile, ADDRESS,
BITSTRING, BOOLEAN, CHAR, CHARSTRING, COMPONENT, DEFAULT, ERROR, FAIL, FALSE, FLOAT,
HEXSTRING, INCONC, INTEGER, NONE, OBJID, OCTETSTRING, PASS, PORT, TIMER, TRUE,
VERDICTTYPE.

The identifiers that are the names of common classes of the Java library (such as System, Map,)
should be avoided in TTCN-3 modules. The name clashes clashes might create problems during the
implementation of external functions and testports.

Note that these name mapping rules apply to all TTCN-3 identifiers, including module, Test Port,

50

type, field, variable and function names.

12.2. Modules

The Java code generator generates a Java class for every TTCN-3 and ASN.1 module. All Java
definitions that belong to the module (including Test Port classes and external functions) are placed
in that class. The name of the class is derived from the module identifier according to the rules
described in Mapping of Names and Identifiers.

When accessing a Java entity that belongs to a different module than the referring Test Port or
external function is in the reference has to be prefixed with the class of the referenced module and
the class of the referenced module being imported. For example, to access the Java class that
realizes type MyType defined in MyModulel from a Test Port that belongs to module MyModule? the
reference shall be written as MyModule1.MyType.

12.3. Predefined TTCN-3 Data Types

in the TTCN-3 Base Library all basic data types of TTCN-3 were implemented as Java classes. This is
because: * The TTCN-3 executor must know whether a variable has a valid value or not because
sending an unbound value must result in a dynamic test case error. * Complex types (like a record
or set) have no equivalents in Java. * Encoding and decoding of types in not present in Java types. *
etc.

This section describes the member functions of these classes.

The toString of the built in and generated types is not considered part of the
WARNING public API for Test Port development. Its implementation might be subject to
change without notice. Please do not use it.

12.3.1. Integer

The TTCN-3 type integer is implemented in class TitanInteger.
The class TitanInteger has the following public member functions:

Table 8. Public member functions of the class TitanInteger

Member functions Notes

31

TitanInteger() Initializes to
unbound value.

TitanInteger(final int otherValue) Initializes to a
given value.

TitanInteger(final BigInteger otherValue) Initializes to a
Constructors given value.
TitanInteger(final TitanInteger otherValue) Copy constructor.
TitanInteger(final String otherValue) Initializes with the
String
representation of
an integer.
TitanInteger operator_assign(final int otherValue) Sets to given
value.
TitanInteger operator_assign(final BigInteger Sets to given
otherValue)
Assignment value.
operators TitanInteger operator_assign(final TitanInteger Sets to given
otherValue) value.
TitanInteger operator_assign(final Base_Type otherValue) Setsto given
value.
boolean operator_equals(final int otherValue) Returns true if
equals.
boolean operator_equals(final BigInteger otherValue) and false
otherwise.
) boolean operator_equals(final TitanInteger otherValue)
Comparison
operators boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final int otherValue)
boolean operator_not_equals(final BigInteger otherValue)

boolean operator_not_equals(final TitanInteger
otherValue)

Comparison
operators

boolean is_less_than(final int otherValue)

boolean is_less_than(final BigInteger otherValue)

boolean is_less_than(final TitanInteger otherValue)
boolean is_less_than_or_equal(final int otherValue)
boolean is_less_than_or_equal(final BigInteger otherValue)

boolean is_less_than_or_equal(final TitanInteger
otherValue)

boolean is_greater_than(final int otherValue)

boolean is_greater_than(final BigInteger otherValue)
boolean is_greater_than(final TitanInteger otherValue)
boolean is_greater_than_or_equal(final int otherValue)

boolean is_greater_than_or_equal(final BigInteger
otherValue)

boolean is_greater_than_or_equal(final TitanInteger
otherValue)

33

Arithmetic
operators

Casting operator

54

TitanInteger add()

TitanInteger sub()

TitanInteger add(final int other_value)
TitanInteger add(final BigInteger other_value)
TitanInteger add(final TitanInteger other_value)
TitanInteger sub(final int other_value)
TitanInteger sub(final BigInteger other_value)
TitanInteger sub(final TitanInteger other_value)
TitanInteger mul(final int other_value)
TitanInteger mul(final BigInteger other_value)
TitanInteger mul(final TitanInteger other_value)
TitanInteger div(final int other_value)
TitanInteger div(final BigInteger other_value)
TitanInteger div(final TitanInteger other_value)

TitanInteger rem(final int other_value)

TitanInteger rem(final BigInteger other_value)
TitanInteger rem(final TitanInteger other_value)

TitanInteger mod(final int other_value)

TitanInteger mod(final BigInteger other_value)
TitanInteger mod(final TitanInteger other_value)
int get_int()

long get_long()

BigInteger get_BigInteger()

Unary plus.
Unary minus.

Addition.

Subtraction.

Multiplication.

Integer division.

remainder of the
division.

modulo of the
division.

Returns the value.
Returns the value.

Returns the value.

boolean is_native() is the value native
int.

boolean is_bound() Returns whether
the value is bound.

boolean is_present() Returns whether
the value is
present.

boolean is_value() Returns whether
the value is a

Other member value.
functions void Tog() Puts the value into

log.

void clean_up() Deletes the value,
setting it to
unbound.

void encode(final TTCN_Typedescriptor p_td, final encodes the value.

TTCN_Buffer p_buf, final coding_type p_coding, final int

flavour)

void decode(final TTCN_Typedescriptor p_td, final decodes the value.

TTCN_Buffer p_buf, final coding_type p_coding, final int

flavour)

The comparison, arithmetic and shifting operators are also available as global functions for that
case when the left side is int and the right side is TitanInteger. Using the value of an unbound
variable for anything will cause dynamic test case error.

The get_int() is applicable only to TitanInteger objects holding a signed value with at most 31
useful bits, since in Java the native int type is 32-bit large including the sign bit. Being used on an
TitanInteger object holding a bigger (for example a 32-bit unsigned) value will result in run-time
error.

Please note that if the value stored in a TitanInteger object is too big (that is, it cannot be
represented as a int) the value returned by get_long() will contain only the lowest 64 bits of the
original value.

In addition, the following static functions are available for modulo division. These functions return
the result of mod and rem operations according to TTCN-3 semantics.

55

TitanInteger mod(final TitanInteger left_value, final TitanInteger right_value);
TitanInteger mod(final TitanInteger left_value, final int right_value);
TitanInteger mod(final int left_value, final TitanInteger right_value);
TitanInteger mod(final int left_value, int right_value);

TitanInteger rem(final TitanInteger left_value, final TitanInteger right_value);
TitanInteger rem(final TitanInteger left_value, final int right_value);
TitanInteger rem(final int left_value, final TitanInteger right_value);
TitanInteger rem(final int left_value, final int right_value);

Other operators (static functions):

TitanInteger add(final int int_value, final TitanInteger other_value); // Add
TitanInteger sub(final int int_value, final TitanInteger other_value); // Subtract
TitanInteger mul(final int int_value, final TitanInteger other_value); // Multiply
TitanInteger div(final int int_value, final TitanInteger other_value); // Divide
boolean operator_equals(final int intValue, final TitanInteger otherValue); // Equal
boolean operator_not_equals(final int intValue, final TitanInteger otherValue); // Not
equal

boolean is_less_than(final int intValue, final TitanInteger otherValue); // Less than
boolean is_greater_than(final int intValue, final TitanInteger otherValue); // More
than

12.3.2. Float

The TTCN-3 type float is implemented in class TitanFloat.
The class TitanFloat has the following public member functions:

Table 9. Public member functions of the class TitanFloat

Member functions Notes
TitanFloat() Initializes to
unbound value.
TitanFloat(final double otherValue) Initializes to a
Constructors given value.
TitanFloat(final Ttcn3Float otherValue)
TitanFloat(final TitanFloat otherValue) Copy constructor.
TitanFloat operator_assign(final double otherValue) Assigns the given
value
Assignment TitanFloat operator_assign(final Ttcn3Float otherValue) and setsthe bound
operators flag.

TitanFloat operator_assign(final TitanFloat otherValue)

TitanFloat operator_assign(final Base_Type otherValue)

36

Comparison
operators

boolean operator_equals(final double otherValue) Returns true if
equals

boolean operator_equals(final Ttcn3Float otherValue) and false
otherwise.

boolean operator_equals(final TitanFloat otherValue)
boolean operator_equals(final Base_Type otherValue)
boolean operator_not_equals(final double otherValue)
boolean operator_not_equals(final Ttcn3Float otherValue)
boolean operator_not_equals(final TitanFloat otherValue)
boolean is_less_than(final double otherValue)

boolean is_less_than(final Ttcn3Float otherValue)

boolean is_less_than(final TitanFloat otherValue)

boolean is_less_than_or_equal(final double otherValue)
boolean is_less_than_or_equal(final Ttcn3Float otherValue)
boolean is_less_than_or_equal(final TitanFloat otherValue)
boolean is_greater_than(final double otherValue)

boolean is_greater_than(final Ttcn3Float otherValue)
boolean is_greater_than(final TitanFloat otherValue)
boolean is_greater_than_or_equal(final double otherValue)

boolean is_greater_than_or_equal(final Ttcn3Float
otherValue)

boolean is_greater_than_or_equal(final TitanFloat
otherValue)

57

TitanFloat add()
TitanFloat sub()
TitanFloat add(final double other_value)
TitanFloat add(final Ttcn3Float other_value)
TitanFloat add(final TitanFloat other_value)
TitanFloat sub(final double other_value)
Arithmetic TitanFloat sub(final Ttcn3Float other_value)
operators TitanFloat sub(final TitanFloat other_value)
TitanFloat mul(final double other_value)
TitanFloat mul(final Ttcn3Float other_value)
TitanFloat mul(final TitanFloat other_value)
TitanFloat div(final double other_value)

TitanFloat div(final Ttcn3Float other value)

TitanFloat div(final TitanFloat other value)

Casting operator Double get_value()

boolean is_native()

boolean is_bound()

boolean is_present()

boolean is_value()

Other member
functions void log()

void clean_up()

void encode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

void decode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

Unary plus.
Unary minus.

Addition.

Subtraction.

Multiplication.

Division.

Returns the value.
is the value native
int.

Returns whether

the value is bound.

Returns whether
the value is
present.

Returns whether
the value is a
value.

Puts the value into
log.

Deletes the value,
setting it to
unbound.

encodes the value.

decodes the value.

The comparison and arithmetic operators are also available as static functions for that case when
the left side is double and the right side is TitanFloat. Using the value of an unbound variable for

anything will cause dynamic test case error.

38

Other operators (static functions):

TitanFloat add(final double double value, final TitanFloat other _value);
TitanFloat sub(final double double_value, final TitanFloat other_value);
Subtract
TitanFloat mul(final double double _value, final TitanFloat other_value);
Multiply
TitanFloat div(final double double value, final TitanFloat other _value);

// Add
//

//

// Divide

boolean operator_equals(final double doubleValue, final TitanFloat otherValue); //

Equal

boolean operator_not_equals(final double doubleValue, final TitanFloat otherValue); //

Not equal

boolean is_less than(final double doubleValue, final TitanFloat otherValue); // Less

than

boolean is_greater_than(final double doubleValue, final TitanFloat otherValue); //

More than

12.3.3. Boolean

The TTCN-3 type boolean is implemented in class TitanBoolean.
The class TitanBoolean has the following public member functions:

Table 10. Public member functions of the class TitanBoolean

Member functions
TitanBoolean()

Constructors TitanBoolean(final Boolean otherValue)

TitanBoolean(final TitanBoolean otherValue)

TitanBoolean operator_assign(final boolean otherValue)

Assignment TitanBoolean operator_assign(final TitanBoolean otherValue)
operators
TitanBoolean operator_assign(final Base_Type otherValue)
boolean operator_equals(final boolean otherValue)
boolean operator_equals(final TitanBoolean otherValue)
Comparison
operators

boolean operator_equals(final Base_Type otherValue)
boolean operator_not_equals(final boolean otherValue)

boolean operator_not_equals(final TitanBoolean otherValue)

Notes

Initializes to
unbound
value.

Initializes to a
given value.

Copy
constructor.

Assigns the
given value

and sets the
bound flag.

Returns true if
equals

and false
otherwise.

Same as XOR.

39

Logical
operators

Casting
operator

Other member
functions

boolean not()

boolean and(final boolean other_value)
boolean and(final TitanBoolean other_value)
boolean or(final boolean other_value)
boolean or(final TitanBoolean other_value)

boolean xor(final boolean other value)

boolean xor(final TitanBoolean other_value)

Boolean get_value()

boolean is_bound()

boolean is_present()

boolean is_value()

void log()

void clean_up()

void encode(final TTCN_Typedescriptor p_td, final TTCN_Buffer
p_buf, final coding_type p_coding, final int flavour)

void decode(final TTCN_Typedescriptor p_td, final TTCN_Buffer
p_buf, final coding_type p_coding, final int flavour)

Negation
(NOT).

Logical AND.

Logical OR.

Exclusive or
(XOR).

Returns the
value.

Returns
whether the
value is bound.

Returns
whether the
value is
present.

Returns
whether the
value is a
value.

Puts the value
into log. Like
"true" or
"false".

Deletes the
value, setting it
to unbound.

encodes the
value.

decodes the
value.

The comparison and logical operators are also available as static functions for that case when the
left side is boolean and the right side is TitanBoolean. Using the value of an unbound variable for
anything will cause dynamic test case error.

Other operators (static functions):

60

boolean
boolean
boolean
boolean
Equal

boolean
Not equal

12.3.4. Verdicttype

The TTCN-3 type verdicttype is implemented in class TitanVerdictType.
The class TitanVerdictType has the following public member functions:

Table 11. Public member functions of the class TitanVerdictType

Constructors

Assignment
operators

Comparison
operators

Casting
operator

Member functions
TitanVerdictType()

TitanVerdictType(final VerdictTypeEnum otherValue)
TitanVerdictType(final TitanVerdictType otherValue)
TitanVerdictType operator_assign(final VerdictTypeEnum

otherValue)

TitanVerdictType operator_assign(final TitanVerdictType
otherValue)

TitanVerdictType operator_assign(final Base_Type otherValue)

boolean operator_equals(final VerdictTypeEnum otherValue)

boolean operator_equals(final TitanVerdictType otherValue)

boolean operator_equals(final Base_Type otherValue)
boolean operator_not_equals(final VerdictTypeEnum otherValue)
boolean operator_not_equals(final TitanVerdictType otherValue)

VerdictTypeEnum get_value()

and(final boolean bool_value, final TitanBoolean other_value); // And
xor (final boolean bool _value, final TitanBoolean other_value);
or(final boolean bool value, final TitanBoolean other _value); // Or

operator_equals(final boolean boolValue, final TitanBoolean otherValue); //

// Xor

operator_not_equals(final boolean boolValue, final TitanBoolean otherValue);//

Notes

Initializes to
unbound
value.

Initializes to a
given value.

Copy
constructor.

Assigns the
given value

and sets the
bound flag.

Returns true if
equals

and false
otherwise.

Returns the
value.

61

Other member
functions

boolean is_bound()

boolean is_present()

boolean is_value()

void log()

void clean_up()

void encode(final TTCN_Typedescriptor p_td, final TTCN_Buffer
p_buf, final coding_type p_coding, final int flavour)

void decode(final TTCN_Typedescriptor p_td, final TTCN_Buffer
p_buf, final coding_type p_coding, final int flavour)

Returns
whether the
value is bound.

Returns
whether the
value is
present.

Returns
whether the
value is a
value.

Puts the value
into log. Like
"pass" or "fail".

Deletes the
value, setting it
to unbound.

encodes the
value.

decodes the
value.

The comparison operators are also available as static functions for that case when the left side is
VerdictTypeEnum and the right side is TitanVerdictType. Using the value of an unbound
TitanVerdictType variable for anything will cause dynamic test case error.

Other operators (static functions):

boolean operator_equals(final VerdictTypeEnum par_value, final TitanVerdictType

other_value);

// Equal

boolean operator_not_equals(final VerdictTypeEnum par_value, final TitanVerdictType

other_value);

// Not equal

There are the following three static member functions in class TTCN_Runtime defined in the Base
Library for getting or modifying the local verdict of the current test components:

void setverdict(final TitanVerdictType.VerdictTypeEnum newValue);
void setverdict(final TitanVerdictType newValue);

void setverdict(final TitanVerdictType.VerdictTypeEnum newValue, final String reason);
setverdict(final TitanVerdictType newValue, final String reason);
TitanVerdictType get_verdict();

These functions are the Java equivalents of TTCN-3 setverdict and getverdict operations. Use them
only if your Test Port or Java function encounters a low-level failure, but it can continue its normal

62

operation (that is, error recovery is not necessary).

12.3.5. Bitstring

The equivalent Java class of TTCN-3 type bitstring is called TitanBitString. The bits of the bit string
are stored in an array of ints. In order to reduce the wasted memory space the bits are packed
together, so each int contains eight bits. The first int contains the first eight bits of the bit string; the
second int contains the bits from the 9th up to the 16th, and so on. The first bit of the bit string is
the LSB of the first character; the second bit is the second least significant bit of the first character,
and so on. If the length of the bit string is not a multiple of eight, the unused bits of the last
character can contain any value. So the length of the bit string must be always given.

The class TitanBitString has the following public member functions:

Table 12. Public member functions of the class TitanBitString

Member functions Notes
TitanBitString() Initializes to
unbound value.
TitanBitString(final int other_value[], final int Initializes from a
nof_bits) given length and
Constructors int array.
TitanBitString(final TitanBitString otherValue) Copy constructor.
TitanBitString(final TitanBitString_Element otherValue) Initializes from a
single bitstring
element.
TitanBitString operator_assign(final TitanBitString Assigns the given
otherValue) value and sets the
bound flag.
Assignment TitanBitString operator_assign(final Assigns the given
operators TitanBitString_Element otherValue) single bitstring
element.
TitanBitString operator_assign(final Base_Type
otherValue)
boolean operator_equals(final TitanBitString otherValue) Returns true if
equals
boolean operator_equals(final TitanBitString_Element and false
otherValue) otherwise.
Comparison boolean operator_equals(final Base_Type otherValue)
operators

boolean operator_not_equals(final TitanBitString
otherValue)

boolean operator_not_equals(final TitanBitString_Element
otherValue)

63

Concatenation
operator

Index operator

Bitwise operators

64

TitanBitString operator_concatenate(final TitanBitString
other_value)

TitanBitString operator_concatenate(final
TitanBitString_Element other_value)

TitanBitString Element get_at(final int index_value)

TitanBitString_Element get_at(final TitanInteger
index_value)

TitanBitString_Element constGet_at(final int index_value)

TitanBitString_Element constGet_at(final TitanInteger
index_value)

TitanBitString not4b()

TitanBitString and4b(final TitanBitString otherValue)

TitanBitString and4b(final TitanBitString_Element
otherValue)

TitanBitString or4b(final TitanBitString otherValue)

TitanBitString or4b(final TitanBitString_Element
otherValue)

TitanBitString xor4b(final TitanBitString otherValue)

TitanBitString xor4b(final TitanBitString_Element
otherValue)

Concatenates two
bitstrings.

Concatenates a
bitstring and a
bitstring element.

Gives access to the
given element.
Indexing begins
from zero. Index
overflow causes
dynamic test case
error.

Gives read-only
access to the given
element.

not4b. (bitwise
negation)

and4b. (bitwise
and)

or4b. (bitwise or)

xor4b. (bitwise
X0r)

TitanBitString shift_left(int shift_count) Java equivalent of

operator
TitanBitString shift_left(final TitanInteger shift_count) <<, (shift left)
TitanBitString shift_right(int shift_count) Java equivalent of
operator

Shifting and TitanBitString shift right(final TitanInteger shift_count) >>. (shift right)

rotating operators TitanBitString rotate_left(int rotate_count) Java equivalent of
operator

TitanBitString rotate_left(final TitanInteger rotate_count) <@. (rotate left)

TitanBitString rotate_right(int rotate_count) Java equivalent of
operator

TitanBitString rotate_right(final TitanInteger rotate_count) @>. (rotate right)

_ int[] get_value() Returns a pointer
Casting operator to the int array.
int lengthof() const Returns the length
measured in bits.
boolean is_bound() Returns whether
the value is bound.
boolean is_present() Returns whether
the value is
present.
boolean is_value() Returns whether
the value is a
value.
Other member .
i void log() Puts the value into
functions
log. Example:
’100011’B.
void clean_up() Deletes the value,
setting it to
unbound.
void encode(final TTCN_Typedescriptor p_td, final encodes the value.
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)
void decode(final TTCN_Typedescriptor p_td, final decodes the value.
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

Using the value of an unbound TitanBitString variable for anything will cause dynamic test case
error.

Bitstring element

The Java class TitanBitString_Element is the equivalent of the TTCN-3 bitstring’s element type (the

65

result of indexing a bitstring value). The class does not store the actual bit, only a reference to the
original TitanBitString object, an index value and a bound flag.

NOTE changing the value of the TitanBitString_Element (through the assignment operator)
changes the referenced bit in the original bitstring object.

The class TitanBitString_Element has the following public member functions:

Table 13. Public member functions of the class TitanBitString_Element

Member functions Notes

Constructor TitanBitString_Element(final boolean par_bound_flag, final Initializes the

TitanBitString par_str_val, final int par_bit_pos) object with an
unbound value
or a reference
to a bit in an
existring
TitanBitString
object.

TitanBitString_Element operator_assign(final TitanBitString Sets the

otherValue) referenced bit

to the given
bitstring of

Assignment length 1.

operators TitanBitString_Element operator_assign(final Sets the

TitanBitString_Element otherValue) referenced bit

to the given
bitstring
element.

boolean operator_equals(final TitanBitString otherValue) Comparison
with a bitstring
or a bitstring
element (the
value of the
referenced bits
is compared,
Comparison not the

operators references and

indexes).

boolean operator_equals(final TitanBitString_Element
otherValue)

boolean operator_not_equals(final TitanBitString otherValue)

boolean operator_not_equals(final TitanBitString_Element
otherValue)

66

TitanBitString operator_concatenate(final TitanBitString Concatenates a

other_value) bitstring
element with a
bitstring, or

Concatenation o
operator two bitstring
elements.
TitanBitString operator_concatenate(final TitanBitString_Element
other_value)
TitanBitString not4b() not4b. (bitwise
negation)
TitanBitString and4b(final TitanBitString otherValue) and4b. (bitwise
and)
TitanBitString and4b(final TitanBitString_Element otherValue)
Bitwise TitanBitString or4b(final TitanBitString otherValue) or4b. (bitwise
operators or)
TitanBitString or4b(final TitanBitString_Element otherValue)
TitanBitString xor4b(final TitanBitString otherValue) xor4b. (bitwise
X0r)
TitanBitString xor4b(final TitanBitString Element otherValue)
boolean get_bit() Returns the
referenced bit.
void log() Puts the value
into log.
Example: '1’B.
Other member boolean is_bound() Returns
functions whether the

value is bound.

boolean is_value() Returns

whether the
valueis a
value.

Using the value of an unbound TitanBitString_Element variable for anything will cause dynamic
test case error.

12.3.6. Hexstring

The equivalent Java class of TTCN-3 type hexstring is called TitanHexString. The hexadecimal digits
(nibbles) are stored in an array of unsigned bytes. In order to reduce the wasted memory space two
nibbles are packed into one byte. The first byte contains the first two nibbles of the hexstring, the
second byte contains the third and fourth nibbles, and so on. The hexadecimal digits at odd (first,
third, fifth, etc.) positions occupy the lower 4 bits in the characters; the even ones use the upper 4
bits. The length must be always given with the pointer. If the hexstring has odd length the unused

67

upper 4 bits of the last character may contain any value.
The class TitanHexString has the following public member functions:

Table 14. Public member functions of the class TitanHexString

Member functions Notes
TitanHexString() Initializes to
unbound value.
TitanHexString(final byte otherValue[]) Initializes from a

given byte array.

Constructors TitanHexString(final TitanHexString otherValue)

TitanHexString(final TitanHexString_Element otherValue)
TitanHexString(final byte aValue)
TitanHexString(final String aValue)

TitanHexString operator_assign(final TitanHexString Assigns the given

otherValue) value

Assignment TitanHexString operator_assign(final
operators TitanHexString_Element otherValue)

TitanHexString operator_assign(final Base_Type
otherValue)

boolean operator_equals(final TitanHexString otherValue) Returns true if
equals and false
otherwise.

boolean operator_equals(final TitanHexString_Element

) otherValue)
Comparison

operators boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final TitanHexString
otherValue)

boolean operator_not_equals(final
TitanHexString_Element otherValue)

TitanHexString operator_concatenate(final TitanHexString Concatenates two

other_value) hexstrings.
Concatenation

TitanHexString operator_concatenate(final Concatenates a
operator

TitanHexString_Element other_value) hexstring and a
hexstring element.

68

Index operator

Bitwise operators

Shifting and
rotating operators

Member functions

TitanHexString_Element get_at(final int index_value)

TitanHexString_Element get_at(final TitanInteger
index_value)

TitanHexString_Element constGet_at(final int index_value)

TitanHexString_Element constGet_at(final TitanInteger
index_value)

TitanHexString not4b()

TitanHexString and4b(final TitanHexString otherValue)

TitanHexString and4b(final TitanHexString Element
otherValue)

TitanHexString or4b(final TitanHexString otherValue)

TitanHexString or4b(final TitanHexString Element
otherValue)

TitanHexString xor4b(final TitanHexString otherValue)

HTitanHexString xor4b(final TitanHexString_Element
otherValue)

TitanHexString shift_left(int shift_count)

TitanHexString shift_left(final TitanInteger shift_count)

TitanHexString shift_right(int shift_count)

TitanHexString shift_right(final TitanInteger shift_count)

TitanHexString rotate_left(int rotate_count)

TitanHexString rotate_left(final TitanInteger rotate_count)

TitanHexString rotate_right(int rotateCount)

TitanHexString rotate_right(final TitanInteger
rotateCount)

Notes

Gives access to the
given element.
Indexing begins
from zero. Index
overflow causes
dynamic test case
error.

not4b. (bitwise
negation)

and4b. (bitwise
and)

or4b. (bitwise or)

xor4b. (bitwise
X0r)

Java equivalent of
operator

<<.(shift left)

Java equivalent of
operator

>>_ (shift right)

Java equivalent of
operator

<@. (rotate left)

Javaequivalent of
operator

@>. (rotate right)

69

Member functions Notes
byte[] get_value() Returns a pointer
to the character

Casting operator array. The pointer
might be NULL if
the length is 0.

int lengthof() const Returns the length
measured in bits.

boolean is_bound() Returns whether
the value is bound.

Other member boolean is_present() Returns whether
functions the value is
present.
boolean is_value() Returns whether
the value is a
value.
void log() Puts the value into log. Example: ’5A7’H. void clean_up()
Deletes the value, void encode(final TTCN_Typedescriptor p_td, final encodes the value.
setting it to TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

unbound.

Using the value of an unbound TitanHexString variable for anything will cause a dynamic test case
error.

Hexstring element

The Java class TitanHexString_Element is the equivalent of the TTCN-3 hexstring’s element type (the
result of indexing a hexstring value). The class does not store the actual hexadecimal digit (nibble),
only a reference to the original TitanHexString object, an index value and a bound flag.

changing the value of the TitanHexString_Element (through the assignment operator)

NOTE
changes the referenced nibble in the original hexstring object.

The class TitanHexString_Element has the following public member functions:

Table 15. Public member functions of the class TitanHexString_Element

Member functions Notes

70

Constructor

Assignment
operators

Comparison
operators

Concatenation
operator

TitanHexString_Element(final boolean par_bound_flag,
final TitanHexString par_str_val, final int
par_nibble_pos)

TitanHexString_Element operator_assign(final
TitanHexString otherValue)

TitanHexString_Element operator_assign(final
TitanHexString_Element otherValue)

boolean operator_equals(final TitanHexString otherValue)

boolean operator_equals(final TitanHexString_Element
otherValue)

boolean operator_not_equals(final TitanHexString
otherValue)

boolean operator_not_equals(final
TitanHexString_Element otherValue)

TitanHexString operator_concatenate(final TitanHexString
other value)

TitanHexString operator_concatenate(final
TitanHexString Element other_value)

Initializes the
object with an
unbound value or
areference to a
nibble in an
existring
TitanHexString
object.

Sets the
referenced nibble
to the given
hexstring of length
1.

Sets the
referenced nibble
to the given
hexstring element.

Comparison with a
hexstring or a
hexstring element
(the value of the
referenced nibbles
is compared, not
the references and
indexes).

Concatenates a
hexstring element
with a hexstring,
or two hexstring
elements.

71

TitanHexString not4b()

TitanHexString and4b(final TitanHexString other_value)

TitanHexString and4b(final TitanHexString Element
other_value)
Bitwise operators TitanHexString or4b(final TitanHexString other_value)

TitanHexString or4b(final TitanHexString Element
other_value)

TitanHexString xor4b(final TitanHexString other_value)

TitanHexString xor4b(final TitanHexString Element
other_value)

char get_nibble()

Other member void log()
functions

boolean is_bound()

boolean is_value()

Java equivalent of
operator not4b.
(bitwise negation)

and4b. (bitwise
and)

or4b. (bitwise or)

xor4b. (bitwise
X0r)

Returns the
referenced nibble
(stored in the
lower 4 bits of the
returned
character).

Puts the value into
log. Example: '8’H.

Returns whether
the value is bound.

Returns whether
the value is a
value.

Using the value of an unbound TitanHexString_Element variable for anything will cause dynamic

test case error.

12.3.7. Octetstring

The equivalent Java class of TTCN-3 type octetstring is called TitanOctetString. The octets are
stored in an array of unsigned characters. Each character contains one octet; the first character is

the first octet of the string. The length of the octet string must be always given.

The class TitanOctetString has the following public member functions:

Table 16. Public member functions of the class TitanOctetString

72

Constructors

Assignment
operators

Comparison
operators

Concatenation
operator

Member functions

TitanOctetString()

TitanOctetString(final char otherValue[])

TitanOctetString(final TitanOctetString otherValue)

TitanOctetString(final TitanOctetString_Element

otherValue)

TitanOctetString operator_assign(final TitanOctetString

otherValue)

TitanOctetString operator_assign(final
TitanOctetString_Element otherValue)

TitanOctetString operator_assign(final Base_Type

otherValue)

boolean operator_equals(final TitanOctetString

otherValue)

boolean operator_equals(final TitanOctetString_Element

otherValue)

boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final TitanOctetString

otherValue)

boolean operator_not_equals(final
TitanOctetString Element otherValue)

TitanOctetString operator_concatenate(final
TitanOctetString other_value)

TitanOctetString operator_concatenate(final
TitanOctetString Element other_value)

Notes

Initializes to
unbound value.

Initializes from a
given character
array.

Copy constructor.

Initializes from a
single octetstring
element.

Assigns the given
value and sets the
bound flag.

Assigns the given
octetstring
element.

Returns true if
equals

and false
otherwise.

Concatenates two
octetstrings.

Concatenates an
octetstring and an
octetstring
element.

73

Index operator

Bitwise operators

Shifting and
rotating operators

74

Member functions

TitanOctetString Element get_at(final int index_value)

TitanOctetString Element get_at(final TitanInteger
index_value)

TitanOctetString_Element constGet_at(final int
index_value)

TitanOctetString Element constGet_at(final TitanInteger
index_value)

TitanOctetString not4b()

TitanOctetString and4b(final TitanOctetString otherValue)

TitanOctetString and4b(final TitanOctetString_Element
otherValue)

TitanOctetString or4b(final TitanOctetString otherValue)

TitanOctetString or4b(final TitanOctetString_Element
otherValue)

TitanOctetString xor4b(final TitanOctetString otherValue)

TitanOctetString xor4b(final TitanOctetString_Element
otherValue)

TitanOctetString shift_left(final int shift_count)
TitanOctetString shift_left(final TitanInteger shift_count)
TitanOctetString shift_right(final int shift_count)
TitanOctetString shift_right(final TitanInteger shift_count)
TitanOctetString rotate_left(final int rotate_count)

TitanOctetString rotate_left(final TitanInteger
rotate_count)

TitanOctetString rotate_right(final int rotate_count)

TitanOctetString rotate_right(final TitanInteger
rotate_count)

Notes

Gives access to the
given element.
Indexing begins
from zero. Index
overflow causes
dynamic test case
error.

Gives read-only
access to the given
element.

not4b.(bitwise
negation)

and4b.(bitwise
and)

or4b.(bitwise or)

xor4b. (bitwise
X0r)

operator <<.
(shift left)
operator >>.
(shift right)
operator <@.

(rotate left)

operator @>.

(rotate right)

Member functions Notes
charf(] get_value() Returns a pointer
to the character

Casting operator array. The pointer
might be NULL if

the length is 0.

int lengthof() const Returns the length
measured in bits.

boolean is_bound() Returns whether
the value is bound.

boolean is_present() Returns whether
the value is
present.

boolean is_value() Returns whether
the value is a
value.

Other member : .
i void log() Puts the value into
functions i

log. Like
’073CF0’0.

void clean_up() Deletes the value,
setting it to
unbound.

void encode(final TTCN_Typedescriptor p_td, final encodes the value.

TTCN_Buffer p_buf, final coding_type p_coding, final int

flavour)

void decode(final TTCN_Typedescriptor p_td, final decodes the value.

TTCN_Buffer p_buf, final coding_type p_coding, final int

flavour)

Using the value of an unbound TitanOctetString variable for anything will cause dynamic test case
error.

Octetstring element

The Java class TitanOctetString_Element is the equivalent of the TTCN-3 octetstring’s element type
(the result of indexing an octetstring value). The class does not store the actual octet, only a
reference to the original TitanOctetString object, an index value and a bound flag.

changing the value of the TitanOctetString Element (through the assignment

NOTE
operator) changes the referenced octet in the original octetstring object.

The class TitanOctetString_Element has the following public member functions:

Table 17. Public member functions of the class TitanOctetString_Element

75

76

Constructor

Assignment
operators

Comparison
operators

Concatenation
operator

Member functions

TitanOctetString_Element(final boolean par_bound_flag,
final TitanOctetString par_str_val, final int
par_nibble_pos)

TitanOctetString_Element operator_assign(final
TitanOctetString otherValue)

TitanOctetString_Element operator_assign(final
TitanOctetString_Element otherValue)

TitanOctetString_Element operator_equals(final
TitanOctetString otherValue)

TitanOctetString_Element operator_equals(final
TitanOctetString_Element otherValue)

boolean operator_not_equals(final TitanOctetString
otherValue)

boolean operator_not_equals(final
TitanOctetString_Element otherValue)

TitanOctetString operator_concatenate(final
TitanOctetString other_value)

TitanOctetString operator_concatenate(final
TitanOctetString_Element other_value)

Notes

Initializes the
object with an
unbound value or
a reference to an
octet in an existing
TitanOctetString
object.

Sets the
referenced octet to
the given
octetstring of
length 1.

Sets the
referenced octet to
the given
octetstring
element.

Comparison with
an octetstring or
an octetstring
element (the value
of the referenced
octets is
compared, not the
references and
indexes).

Concatenates an
octetstring
element with an
octetstring, or two
octetstring
elements.

Member functions Notes

TitanOctetString not4b() bitwise negation

TitanOctetString and4b(final TitanOctetString other_value) and4b. (bitwise
and)

TitanOctetString and4b(final TitanOctetString_Element
other_value)

o TitanOctetString or4b(final TitanOctetString other_value) or4b. (bitwise or)
Bitwise operators

TitanOctetString or4b(final TitanOctetString_Element
other _value)

TitanOctetString xor4b(final TitanOctetString other_value) xor4b. (bitwise

XO0r)
TitanOctetString xor4b(final TitanOctetString_Element
other value)
char get_nibble() Returns the
referenced octet.
void log() Puts the value into
log. Example:
'3C’0.

Other member
functions boolean is_bound() Returns whether
the value is bound.

boolean is_value() Returns whether
the value is a
value.

Using the value of an unbound TitanOctetString_Element variable for anything will cause dynamic
test case error.

12.3.8. Char

The char type, which has been removed from the TTCN-3 standard, is no longer supported by the
run-time environment. The compiler substitutes all occurrences of char type with type charstring
automatically.

12.3.9. Charstring

The equivalent Java class of TTCN-3 type charstring is called TitanCharString. The characters are
stored in a StringBuilder..

The class TitanCharString has the following public member functions:

Table 18. Public member functions of the class TitanCharString

Member functions Notes

77

78

Constructors

Assignment
operators

Comparison
operators

TitanCharString() Initializes to

unbound value.
TitanCharString(final String otherValue) Initializes from a
String.
TitanCharString(final StringBuilder otherValue) Initializes from
the StringBuilder.
TitanCharString(final TitanCharString otherValue) Copy constructor.
TitanCharString(final TitanCharString_Element Initializes from a
otherValue) charstring
element.
TitanCharString(final TitanUniversalCharString Initializs from the
otherValue) universal
charstring.

TitanCharString operator_assign(final String otherValue) Assigns the given

value and sets the
bound flag.

TitanCharString operator_assign(final TitanCharString
otherValue)

TitanCharString operator_assign(final Base_Type
otherValue)

TitanCharString operator_assign(final
TitanCharString_Element otherValue)

TitanCharString operator_assign(final
TitanUniversalCharString otherValue)

boolean operator_equals(final TitanCharString Returns true if
otherValue) equals and false
otherwise.

boolean operator_equals(final TitanUniversalCharString
otherValue)

boolean operator_equals(final Base_Type otherValue)
boolean operator_equals(final String otherValue)

boolean operator_equals(final TitanCharString_Element
otherValue)

boolean operator_equals(final
TitanUniversalCharString_Element otherValue)

boolean operator_not_equals(final TitanCharString
otherValue)

boolean operator_not_equals(final
TitanCharString_Element otherValue)

boolean operator_not_equals(final String otherValue)

Concatenation
operator

Index operator

Rotating operators

Casting operator

TitanCharString operator_concatenate(final
TitanCharString other_value)

TitanCharString operator_concatenate(final String
other_value)

TitanCharString operator_concatenate(final
TitanCharString_Element other_value)

TitanUniversalCharString operator_concatenate(final
TitanUniversalCharString other_value)

TitanCharString append(final String aOtherValue)

TitanCharString append(final TitanCharString_Element
aOtherValue)

TitanCharString append(final TitanCharString
aOtherValue)

TitanCharString_Element get_at(final int index_value)

TitanCharString_Element get_at(final TitanInteger
index_value)

TitanCharString_Element constGet_at(final int
index_value)

TitanCharString_Element constGet_at(final TitanInteger
index_value)

TitanCharString rotate_left(final int rotate_count)

TitanCharString rotate_left(final TitanInteger
rotate_count)

TitanCharString rotate_right(final int rotate_count)

TitanCharString rotate_right(final TitanInteger
rotate_count)

StringBuilder get_value()

Concatenates two
charstrings.

Concatenates with
a universal
charstring.

Appends a String.

Appends a
charstring.

Gives access to the
given element.
Indexing begins
from zero. Index
overflow causes
dynamic test case
error.

Gives read-only
access to the given
element.

Java equivalent of
operator
<@.(rotate left)

@>. (rotate right)

Returns the

StringBuilder.

79

int lengthof() const

boolean is_bound()

boolean is_present()

boolean is_value()

Other member
functions void log()

void clean_up()

void encode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

void decode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

Returns the length
measured in bits.

Returns whether
the value is bound.

Returns whether
the value is
present.

Returns whether
the value is a
value.

Puts the value into
log. Like "abc".

Deletes the value,
setting it to
unbound.

encodes the value.

decodes the value.

The comparison, concatenation and rotating operators are also available as static functions for that

case when the left side is String and the right side is TitanCharString.

The log() member function uses single character output for regular characters, but special
characters (such as the quotation mark, backslash or newline characters) are printed using the
escape sequences of the C language. Non-printable control characters are printed in TTCN-3
quadruple notation, where the first three octets are always zero. The concatenation operator (&) is
used between the fragments when necessary. Note that the output does not always conform to
TTCN-3 Core Language syntax, but it is always recognized by both our compiler and the

configuration file parser.

Using the value of an unbound TitanCharString variable for anything will cause dynamic test case

error.

Other operators (static functions):

80

boolean operator_equals(final String stringValue, final TitanCharString otherValue);
// Equal

boolean operator_equals(final String stringValue, final TitanCharString_Element
otherValue); // Equal

boolean operator_not_equals(final String stringValue, final TitanCharString
otherValue); // Not equal

boolean operator_not_equals(final String stringValue, final TitanCharString_Element
otherValue); // Not equal

TitanCharString operator_concatenate(final String stringValue, final TitanCharString
other _value); // Concatenation

TitanCharString operator_concatenate(final String stringValue, final
TitanCharString_Element other_value); // Concatenation

Charstring element

The Java class TitanCharString_Element is the equivalent of the TTCN-3 charstring’s element type
(the result of indexing a charstring value). The class does not store the actual character, only a
reference to the original TitanCharString object, an index value and a bound flag.

NOTE changing the value of the TitanCharString_Element (through the assignment
operator) changes the referenced character in the original charstring object.

The class TitanCharString_Element has the following public member functions:

Table 19. Public member functions of the class TitanCharString_Element

Member functions Notes

TitanCharString_Element(final boolean par_bound_flag, Initializes the
final TitanCharString par_str_val, final int

par_char_pos) object with an

unbound value or
areference to a
character in an
existing
TitanCharString
object.

Constructor

81

82

Assignment
operators

Comparison
operators

Concatenation
operator

TitanCharString_Element operator_assign(final String Sets the

otherValue) referenced

character to the
given String of

length 1.
TitanCharString_Element operator_assign(final Sets the
TitanCharString otherValue) referenced

character to the
given charstring of

length 1.
TitanCharString_Element operator_assign(final Sets the
TitanCharString_Element otherValue) referenced

character to the
given charstring
element.

boolean operator_equals(final String otherValue) Comparison with a
String.

boolean operator_equals(final TitanCharString

otherValue)

boolean operator_equals(final TitanCharString_Element
otherValue)

boolean operator_equals(final TitanUniversalCharString
otherValue)

boolean operator_equals(final
TitanUniversalCharString_Element otherValue)

boolean operator_not_equals(final String otherValue)

boolean operator_not_equals(final
TitanUniversalCharString otherValue)

boolean operator_not_equals(final
TitanUniversalCharString_Element otherValue)

TitanCharString operator_concatenate(final String Concatenates this
other_value) object with a
String.

TitanCharString operator_concatenate(final
TitanCharString other_value)

TitanCharString operator_concatenate(final
TitanCharString Element other_value)

TitanUniversalCharString operator_concatenate(final
TitanUniversalCharString other_value)

TitanUniversalCharString operator_concatenate(final
TitanUniversalCharString_Element other_value)

char get_char() Returns the
referenced
character.
Other member
functions

void log() Puts the value into
log. Example: “a”.

boolean is_bound() Returns whether
the value is bound.

Using the value of an unbound TitanCharString_Element variable for anything will cause dynamic
test case error.

12.3.10. Universal char

This obsolete TTCN-3 type is converted automatically to universal charstringin the parser.

12.3.11. Universal charstring

Each character of a universal charstring value is represented in the following C structure defined
in the Base Library:

public class TitanUniversalChar {
private char uc_group;
private char uc_plane;
private char uc_row;
private char uc_cell;

The four components of the quadruple (that is, group, plane, row and cell) are stored in fields
uc_group, uc_plane, uc_row and uc_cell, respectively. All fields are 8bit unsigned numeric values with
the possible value range 0 .. 255.

In case of single-octet characters, which can be also given in TTCN-3 charstring notation (between
quotation marks), the fields uc_group, uc_plane, uc_row are set to zero. If tuple notation was used for
an ASN.1 string value fields uc_row and uc_cell carry the tuple and the others are set to zero.

Except when performing encoding or decoding, the run-time environment does not check whether
the quadruples used in the following API represent valid character positions according to [8].
Moreover, if ASN.1 multi-octet character string values are used, it is not verified whether the
elements of such strings are permitted characters of the corresponding string type.

The Java equivalent of TTCN-3 type universal charstring is implemented in class
TitanUniversalCharString. The characters of the string are stored in an array of structure
TitanUniversalChar. The array returned by the casting operator is not terminated with a special
character, thus, the length of the string must be always considered when doing operations with the
array. The length of the string, which can be obtained by using member function lengthof(), is
measured in characters (quadruples) and not bytes.

83

For the more convenient usage the strings containing only single-octet characters can also be used
with class TitanUniversalCharString. Therefore some polymorphic member functions and operators
have variants that take String as argument. In these member functions the characters of the String
are implicitly converted to quadruples with group, plane and row fields set to zero.

The class TitanUniversalCharString has the following public member functions:

Table 20. Public member functions of the class TitanUniversalCharString

84

Constructors

Member functions
TitanUniversalCharString()

TitanUniversalCharString(final char uc_group, final char
uc_plane, final char uc_row, final char uc_cell)

TitanUniversalCharString(final TitanUniversalChar
otherValue)

TitanUniversalCharString(final List<TitanUniversalChar>
otherValue)

TitanUniversalCharString(final TitanUniversalChar[]
otherValue)

TitanUniversalCharString(final String otherValue)
TitanUniversalCharString(final StringBuilder otherValue)

Notes

Initializes to
unbound value.

Constructs a string
containing one
character formed
from the given
quadruple.

Constructs a string
containing the
given single
character.

Constructs a string
from an array by
taking the given
number of single-
octet characters.

Constructors

Assignment
operators

TitanUniversalCharString(final TitanCharString
otherValue)

TitanUniversalCharString(final TitanCharString_Element
otherValue)

TitanUniversalCharString(final TitanUniversalCharString

otherValue)

TitanUniversalCharString(final
TitanUniversalCharString_Element otherValue)

TitanUniversalCharString operator_assign(final
TitanUniversalCharString otherValue)

TitanUniversalCharString operator_assign(final
TitanUniversalChar otherValue)

TitanUniversalCharString operator_assign(final char[]
otherValue)

TitanUniversalCharString operator_assign(final String
otherValue)

TitanUniversalCharString operator_assign(final
TitanCharString otherValue)

TitanUniversalCharString operator_assign(final
TitanCharString_Element otherValue)

TitanUniversalCharString operator_assign(final
TitanUniversalCharString_Element otherValue)

TitanUniversalCharString operator_assign(final Base_Type

otherValue)

Constructs a
universal
charstring from a
charstring value.

Constructs a string
containing the
given singe
charstring
element.

Copy constructor.

Constructs a string
containing the
given singe
universal
charstring
element.

Assigns another
string.

Assigns a single
character.

Assigns an array
single-octet
characters.

Assigns a
charstring.

Assigns a single
charstring
element.

Assigns a single
universal
charstring
element.

85

86

Comparison
operators

Comparison
operators

boolean operator_equals(final TitanUniversalCharString
otherValue)

boolean operator_equals(final TitanUniversalChar
otherValue)

boolean operator_equals(final String otherValue)

boolean operator_equals(final TitanCharString
otherValue)

boolean operator_equals(final TitanCharString_Element
otherValue)

boolean operator_equals(final
TitanUniversalCharString Element otherValue)

boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final
TitanUniversalCharString otherValue)

boolean operator_not_equals(final TitanUniversalChar
otherValue)

boolean operator_not_equals(final String otherValue)

boolean operator_not_equals(final TitanCharString
otherValue)

boolean operator_not_equals(final
TitanCharString_Element otherValue)

boolean operator_not_equals(final
TitanUniversalCharString_Element otherValue)

boolean operator_not_equals(final Base_Type otherValue)

Returns true if the

strings are

identical or false

otherwise.

Compares to a

single character.

Compares to a
String.

Compares to a
charstring.

Compares to a
charstring
element.

Compares to a
universal
charstring
element.

Concatenation
operator

Index operator

Rotating operators

TitanUniversalCharString operator_concatenate(final
TitanUniversalCharString other_value)

TitanUniversalCharString operator_concatenate(final
TitanUniversalChar other_value)

TitanUniversalCharString operator_concatenate(final
String other_value)

TitanUniversalCharString operator_concatenate(final
TitanCharString other_value)

TitanUniversalCharString operator_concatenate(final
TitanCharString Element other_value)

TitanUniversalCharString operator_concatenate(final
TitanUniversalCharString_Element other_value)

TitanUniversalCharString_Element get_at(final int
index_value)

TitanUniversalCharString_Element get_at(final
TitanInteger index_value)

TitanUniversalCharString_Element constGet_at(final int
index_value)

TitanUniversalCharString_Element constGet_at(final
TitanInteger index_value)

TitanUniversalCharString rotate_left(final int
rotate_count)

TitanUniversalCharString rotate_left(final TitanInteger
rotate_count)

TitanUniversalCharString rotate_right(final int
rotate_count)

TitanUniversalCharString rotate_right(final TitanInteger
rotate_count)

Concatenates two
strings.

Concatenates a
single character.

Concatenates a
single-octet string.

Concatenates a
charstring.

Concatenates a
charstring
element.

Concatenates a
universal
charstring
element.

Gives access to the
given element.
Indexing begins
from zero. Index
overflow causes
dynamic test case
error.

Gives read-only
access to the given
element.

<@(rotate left).

@>(rotate right).

87

Casting operator

88

UTF-8 encoding
and decoding

List<TitanUniversalChar> get_value() Returns a pointer
to the array of
characters. There
is no terminator
character at the
end.

void encode_utf8(final TTCN_Buffer buf) Appends the UTF-8
representation of
the string to the
given buffer

void encode_utf8(final TTCN_Buffer buf, final boolean
addBOM)

void decode_utf8(final char[] valueStr, final CharCoding
code, final boolean checkBOM)

void encode_utf16(final TTCN_Buffer buf, final CharCoding
expected_coding)

void decode_utf16(final int n_octets, final char[] octets_ptr,
final CharCoding expected_coding)

void encode_utf32(final TTCN_Buffer buf, final CharCoding
expected_coding)

void decode_utf32(final int n_octets, final char[] octets_ptr,
final CharCoding expected_coding)

int lengthof() const Returns the length
measured in
characters.

boolean is_bound() Returns whether
the value is bound.

boolean is_present() Returns whether
the value is
present.

boolean is_value() Returns whether

the value is a
Other member value.

unctions :
f void log() Puts the value into

log. See below.

void clean_up() Deletes the value,
setting it to
unbound.

void encode(final TTCN_Typedescriptor p_td, final encodes the value.

TTCN_Buffer p_buf, final coding_type p_coding, final int

flavour)

void decode(final TTCN_Typedescriptor p_td, final decodes the value.

TTCN_Buffer p_buf, final coding_type p_coding, final int

flavour)

The comparison and concatenation operators are also available as static functions for that case
when the left operand is a single-octet string (String) or a single character (TitanUniversalChar) and
the right side 1is TitanUniversalCharString value. Using the value of an wunbound
TitanUniversalCharString variable for anything causes dynamic test case error.

The TitanUniversalCharString variable used with the decode_utf8() method must be newly
constructed (unbound) or clean_up() must have been called, otherwise a memory leak will occur.

The logged printout of universal charstring values is compatible with the TTCN-3 notation for such
strings. The format to be used depends on the contents of the string. Each character (quadruple) is
classified whether it is directly printable or not. The string is fragmented based on this
classification. Each fragment consists of either a single non-printable character or a maximal length
contiguous sequence of printable characters. The fragments are logged one after another separated
by an & character (concatenation operator). The printable fragments use the normal charstring
notation; the non-printable characters are logged in the TTCN-3 quadruple notation. An empty
universal charstring value is represented by a pair of quotation marks (like in case of empty
charstring values).

An example printout in the log can be the following. The string consists of two fragments of
printable characters and a non-printable quadruple, which stands for Hungarian letter "4":

"Character " & char(@, @, 1, 113) & " is a letter of Hungarian alphabet"

89

Other operators (static functions):

boolean operator_equals(final TitanUniversalChar left_value, final TitanUniversalChar
right_value); //Equal

boolean operator_equals(final TitanUniversalChar ucharValue, final
TitanUniversalCharString otherValue); // Equal

boolean operator_equals(final String otherValue, final TitanUniversalCharString
rightValue)); // Equal

boolean operator_not_equals(final TitanUniversalChar left_value, final
TitanUniversalChar right_value); //Not equal

boolean operator_not_equals(final TitanUniversalChar ucharValue, final
TitanUniversalCharString otherValue); // Not equal

boolean operator_not_equals(final String otherValue, final TitanUniversalCharString
rightValue)); // Not equal

TitanUniversalCharString operator_concatenate(final TitanUniversalChar ucharValue,
final TitanUniversalCharString other_value); // Concatenation
TitanUniversalCharString operator_concatenate(final String stringValue, final
TitanUniversalCharString other_value); // Concatenation

Universal charstring element

The Java class TitanUniversalCharString_Element is the equivalent of the TTCN-3 universal
charstring’s element type (the result of indexing a universal charstring value). The class does not
store the actual character, only a reference to the original TitanUniversalCharString object, an index
value and a bound flag.

changing the value of the TitanUniversalCharString_Element (through the
NOTE assignment operator) changes the referenced character in the original universal
charstring object.

The class TitanUniversalCharString_Element has the following public member functions:

Table 21. Public member functions of the class TitanUniversalCharString_Element

Member functions Notes

TitanUniversalCharString_Element(final boolean Initializes the
par_bound_flag, final TitanUniversalCharString

') object with an
par_str_val, final int par_char_pos)

unbound value or
areference to a
character in an
existing
TitanUniversalCha
rString object.

Constructor

90

Assignment
operators

Comparison
operators

Comparison
operators

TitanUniversalCharString_Element operator_assign(final Setsthe
TitanUniversalChar otherValue) referenced
character to the
given universal
character.
TitanUniversalCharString_Element operator_assign(final

String otherValue)

TitanUniversalCharString_Element operator_assign(final
TitanCharString otherValue)

TitanUniversalCharString_Element operator_assign(final
TitanCharString_Element otherValue)

TitanUniversalCharString_Element operator_assign(final
TitanUniversalCharString otherValue)

TitanUniversalCharString_Element operator_assign(final
TitanUniversalCharString_Element otherValue)

boolean operator_equals(final TitanUniversalChar Comparison with a
otherValue) universal
character.

boolean operator_equals(final String otherValue)

boolean operator_equals(final TitanCharString
otherValue)

boolean operator_equals(final TitanCharString Element
otherValue)

boolean operator_equals(final TitanUniversalCharString
otherValue)

boolean operator_equals(final
TitanUniversalCharString_Element otherValue)

boolean operator_not_equals(final TitanUniversalChar
otherValue)

boolean operator_not_equals(final String otherValue)

boolean operator_not_equals(final TitanCharString
otherValue)

boolean operator_not_equals(final
TitanCharString Element otherValue)

boolean operator_not_equals(final
TitanUniversalCharString otherValue)

boolean operator_not_equals(final
TitanUniversalCharString_Element otherValue)

91

Concatenation
operator

Other member
functions

TitanUniversalCharString operator_concatenate(final
TitanUniversalChar other_value)

TitanUniversalCharString operator_concatenate(final
String other_value)

TitanUniversalCharString operator_concatenate(final
TitanCharString other_value)

TitanUniversalCharString operator_concatenate(final
TitanCharString Element other_value)

TitanUniversalCharString operator_concatenate(final
TitanUniversalCharString other_value)

TitanUniversalCharString operator_concatenate(final
TitanUniversalCharString_Element other_value)

TitanUniversalChar get_char()

void log()

boolean is_bound()

boolean is_present()

boolean is_value()

Concatenates this
object with a
universal
character.

Returns the
referenced
character.

Puts the value into
log. Example: “a@”
or char(0, 0, 1,
113).

Returns whether
the value is bound.

Returns whether
the value is
present.

Returns whether
the value is a
value.

Using the value of an unbound TitanUniversalCharString_Element variable for anything will cause
dynamic test case error.

12.3.12. Object Identifier Type

The object identifier type of TTCN-3 (objid) is implemented in class TitanObjectid. In the run-time
environment the components of object identifier values are represented in NumberForm, that is, in
integer values. The values of components are stored in an array with a given length. The type of the
components is specified with a TitanInteger. Class TitanObjectid has the following member
functions.

Table 22. Public member functions of the class TitanObjectid

92

Constructors

Assignment
operator

Comparison
operators

Indexing operators

Member functions
TitanObjectid()

TitanObjectid(final int init_n_components, final
TitanInteger:-- values)

TitanObjectid(final TitanObjectid otherValue)

TitanObjectid operator_assign(final TitanObjectid
otherValue)

Base_Type operator_assign(final Base_Type otherValue)

boolean operator_equals(final TitanObjectid otherValue)

boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final TitanObjectid
otherValue)

TitanInteger get_at(final int index_value)

TitanInteger get_at(final TitanInteger index_value)

TitanInteger constGet_at(final int index_value)

TitanInteger constGet_at(final TitanInteger index_value)

Notes

Initializes to
unbound value.

Initializes the
number of
components to
n_components.
The components
themselves shall
be given as
additional integer
arguments after
each other,
starting with the
first one.

Copy constructor.

Assigns the given
value and sets the
bound flag.

Returns true if the
two values are
equal and false
otherwise.

Returns a
reference to the
ith component.

Returns a read-
only reference to
the ith
component.

93

Other member
functions

NOTE

Member functions
TitanInteger lengthof()

void log()

boolean is_bound()

boolean is_present()

void clean_up()

number of components is constant and known at compile time.

Notes

Returns the
number of
components.

Puts the value into
log in
NumberForm.
Like this: “objid 0
40”7,

Returns whether
the value is bound.

Returns whether
the value is
present.

Deletes the value,
setting it to
unbound.

The constructor with variable number of arguments is useful in situations when the

Using the value of an unbound TitanObjectid variable for anything will cause dynamic test case

error.

12.3.13. Component References

TTCN-3 variables of component types are used for storing component references to PTCs. The
internal representation of component references are test tool dependent, our test executor handles
them as small integer numbers.

All TTCN-3 component types are mapped to the same Java class, which is called TitanComponent.

There are some predefined constants of component references in TTCN-3. These are public static
final members of the TitanComponent class defined in the following way:

Table 23. Predefined component references

TTCN-3 constant

null
mtc

system

TitanComponent member

name
NULL
MTC
SYSTEM

Numeric value

COMPREF 0
COMPREF 1
COMPREF 2

The class TitanComponent has the following public member functions:

Table 24. Public member functions of the class TitanComponent

94

Constructors

Assignment
operators

Comparison
operators

Casting operator

Other member
functions

Member functions
TitanComponent()

TitanComponent(final int otherValue)

TitanComponent(final TitanComponent otherValue)

TitanComponent operator_assign(final int otherValue)

TitanComponent operator_assign(final TitanComponent
otherValue)

TitanComponent operator_assign(final Base_Type
otherValue)

boolean operator_equals(final int otherValue)

boolean operator_equals(final TitanComponent
otherValue)

boolean operator_equals(final Base_Type otherValue)
boolean operator_not_equals(final int otherValue)

boolean operator_not_equals(final TitanComponent
otherValue)

int get_component()

void log()

boolean is_present()

boolean is_bound()

boolean is_value()

void clean_up()

Notes

Initializes to
unbound value.

Initializes to a
given value.

Copy constructor.

Assigns the given
value

and sets the bound
flag.

Returns true if
equals

and false
otherwise.

Returns the value.

Puts the value into
log in decimal
form or in
symbolic format
for special
constants. Like 3
or mtc.

Returns whether
the value is
present.

Returns whether
the value is bound.

Returns whether
the value is a
value.

Deletes the value,
setting it to
unbound.

Component references are managed by MC. All new test components are given a unique reference

95

that was never used in the test campaign before (not even in a previous test case). The new
numbers are increasing monotonously. The reference of the firstly created component is 3; the next
one will be 4, and so on.

Using the value of an unbound component reference for anything will cause dynamic test case
error.

Other operators (static functions):
boolean operator_equals(final int left_value, final TitanComponent right_value); //
Equal

boolean operator_not_equals(final int left_value, final TitanComponent right_value);
// Not equal

12.3.14. Empty Types

Empty record and set types are not real built-in types in TTCN-3, but the Java realization of these
types also differs from regular records or sets. The empty types are almost identical to each other,
only their names are different.

Each empty type is defined in a Java class, which is generated by the Java code generator. Using
separate classes enables us to differentiate among them in Java. For example, several empty types
can be defined as incoming or outgoing types on the same TTCN-3 port type.

Let us consider the following TTCN-3 type definition as an example:

type record Dummy {};

The generated class will rely on an enumerated Java type TitanNull_Type, which is defined as
follows:

public enum TitanNull_Type {
NULL_VALUE
}

The only possible value stands for the TTCN-3 empty record or array value (that is for "{}"), which
is the only possible value of TTCN-3 type Dummy. Note that this type and value is also used in the
definition of record of and set of type construct.

The generated Java class Dummy will have the following member functions:

Table 25. Public member functions of the class Dummy

96

Member functions

Constructors

Assignment operators

Comparison operators

Other member functions

Dummy ()

Dummy(final TitanNull_Type
otherValue)

Dummy(final Dummy otherValue
)

Dummy operator_assign(final
TitanNull_Type otherValue)

Dummy operator_assign(final
Dummy otherValue)

Dummy operator_assign(final
Base_Type otherValue)

boolean operator_equals(final
TitanNull_Type otherValue)

boolean operator_equals(final
Dummy otherValue)

boolean operator_equals(final
Base_Type otherValue)

boolean operator_not_equals(
final TitanNull_Type otherValue
)

boolean operator_not_equals(
final Base_Type otherValue)

void log()

boolean is_present()

boolean is_bound()

boolean is_value()

void clean_up()

encode(final
TTCN_Typedescriptor p_td,
final TTCN_Buffer p_buf, final
coding_type p_coding, final
int flavour)

void decode(final
TTCN_Typedescriptor p_td,
final TTCN_Buffer p_buf, final
coding_type p_coding, final
int flavour)

Notes
Initializes to unbound value.

Initializes to the only possible
value.

Copy constructor.

Assigns the only possible value
and sets the bound flag.

Returns true if both arguments
are bound.

Returns false if both arguments
are bound.

Puts the value, that is, {}, into
log.

Returns whether the value is
present.

Returns whether the value is
bound.

Returns whether the value is a
value.

Deletes the value, setting it to
unbound.

97

Setting the only possible value is important, because using the value of an unbound variable for
anything will cause dynamic test case error.

12.4. Compound Data Types

The user-defined compound data types are implemented in Java classes. These classes are
generated by the Java code generator according to type definitions. In contrast with the basic types,
these classes can be found in the generated code.

12.4.1. Record and Set Type Constructs

The TTCN-3 type constructs record and set are mapped in an identical way to Java. There will be a
Java class for each record type in the generated code. This class builds up the record from its fields.
“I'The fields can be either basic or compound types.

Let us consider the following example type definition. The types t1 and t2 can be arbitrary.

type record t3 {
t1 1,
t2 f2

}

The generated class t3 will have the following public member functions:

Table 26. Public member functions of the class t3

Member functions Notes

t30) Initializes all fields
to unbound value.
t3(final t1 f1, final t2 f2) Initializes from

given field values.

Constructors The number of
arguments equals
to the number of
fields.

t3(final t3 otherValue) Copy constructor.

t3 operator_assign(final t3 otherValue) Assigns the given

value and sets the
bound flag for
operator each field.

t3 operator_assign(final Base_Type otherValue)

Assignment

98

boolean operator_equals(final t3 other_value) Returns true if all
fields are equal

. and false
Comparison .
otherwise.
operators
boolean operator_equals(final Base_Type other_value)
boolean operator_not_equals(final t3 other_value)
t1 get_field_f10); t2 get_field_f20 Gives access to the

first/second field.
Field access

functions t1 constGet_field f1(); t2 constGet_field f2(); The same, but it
gives read-only

access.
TitanInteger size_of() Returns the size

(number of fields).

void log() Puts the value into
log. Like { f1 :=5,
f2 :=7abc”}.

boolean is_present() Returns whether
the value is
present.

boolean is_bound() Returns whether

the value is bound.
Other member

functions boolean is_value() Returns whether

the value is a
value.

void clean_up() Deletes the value,
setting it to
unbound.

void encode(final TTCN_Typedescriptor p_td, final

TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

void decode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

The record value is unbound if one or more fields of it are unbound. Using the value of an unbound
variable for anything (even for comparison) will cause dynamic test case error.

Optional Fields in Records and Sets

TTCN-3 permits optional fields in record and set type definitions. An optional field does not have to
be always present, it can be omitted. But the omission must be explicitly denoted. Let us change our
last example to this.

99

type record t3 {
t1 f1,
t2 f2 optional

}

The optional fields are implemented using a Java generic class called Optional that creates an
optional value from any type. In the definition of the generated class t3, the type t2 will be replaced
by Optional<t2> everywhere and anything else will not be changed.

The class Optional<TYPE extends Base_Type> has the following member functions:

Table 27. Table Public member functions of the class Optional<TYPE extends Base_Type>

Constructors

Assignment
operators

Comparison
operators

100

Member functions
Optional(final Class<TYPE> clazz)

Optional(final Class<TYPE> clazz, final template_sel
otherValue)

Optional(final Optional<TYPE> otherValue)

Optional<TYPE> operator_assign(final template_sel
otherValue)

Optional<TYPE> operator_assign(final Optional<TYPE>
otherValue)

Optional<TYPE> operator_assign(final Base_Type
otherValue)

boolean operator_equals(final template_sel otherValue)

boolean operator_equals(final Optional<TYPE>
otherValue)

boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final template_sel
otherValue)

boolean operator_not_equals(final Optional<TYPE>
otherValue)

Notes

Initializes to
unbound value,
with a class.

Initializes to omit
value, if the
argument is OMIT
VALUE.

Copy constructor.

Assigns omit
value, if the right
value is OMIT
VALUE.

Assigns the given
optional value.

Returns true if the
value is omit and
the right side is
OMIT VALUE or
false otherwise.

Returns true if the
two values are
equal or false
otherwise.

TYPE get()

Casting operators

TYPE constGet()

boolean ispresent()

boolean is_present()

boolean is_value()

Other member

functions
boolean is_bound()

boolean is_optional()

void log()

void clean_up()

Gives read-write
access to the
value. If the value
was not previously
present, sets the
bound flag true
and the value will
be initialized to
unbound.

Gives read-only
access to the
value. If the value
is not present,
causes a dynamic
test case error.

Returns true if the
value is present,
false if the value is
omit or causes
dynamic test case
error if the value
is unbound.

Returns true if the
value is present,
false otherwise.

Returns true if the
value is present
and is a value,
false otherwise.

Returns true if the
value is present or
omit, false
otherwise.

return true;

Puts the optional
value into log.
Either "omit” or
the value of t2.

Deletes the value,
setting it to
unbound.

In some member functions of the generic class Optional the enumerated Java type template_sel is
used. It has many possible values, but in the optional class only OMIT_VALUE can be used, which

101

stands for the TTCN-3 omit. Usage of other predefined values of template_sel will cause dynamic
test case error.

Using the value of an unbound optional field for anything will also cause dynamic test case error.

12.4.2. Union Type Construct

The TTCN-3 type construct union is implemented in a Java class for each union type in the
generated code. This class may contain any, but exactly one of its fields. The fields can be either
basic or compound types or even identical types.

Let us consider the following example type definition. The types t1 and t2 can be arbitrary.

type union t3 {
t1 f1,
t2 f2

An ancillary enumerated type is created in the generated class t3, which represents the selection:
enum union_selection_type { UNBOUND_VALUE, ALT_f1, ALT_f2 };

The type t3.union_selection_type is used to distinguish the fields of the union. The predefined
constant values are generated as t3.ALT_<field name>.

The generated class t3 will have the following public member functions:

Table 28. Public member functions of the class t3

Member functions Notes
30) Initializes to
Constructors unbound value.
t3(f1nal t3 otherValue) Copy constructor.
t3 operator_assign(final t3 otherValue) Assigns the given
Assignment value.
operator . .
t3 operator_assign(final Base_Type otherValue)
boolean operator_equals(final t3 otherValue) Returns true if the
selections and
field values are
Comparison equal and false
operators otherwise.

boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final t3 otherValue)

102

Member functions

t1 constGet_field f1()

Field access
functions t1 get_field_f10)

t2 constGet_field f2()
t2 get_field_f2()

Notes

Gives read-only
access to the first
field. If other field
is selected, this
function will
cause a dynamic
test case error. So
use get_selection()
first.

Selects and gives
access to the first
field. If other field
was previously
selected, its value
will be destroyed.

103

Member functions Notes
union_selection_type get_selection() Returns the

current selection.
It will return
t3.UNBOUND
VALUE if the value
is unbound,
t3.ALT_f1 if the
first field was
selected, and so

on.
boolean ischosen(final union_selection_type Checks if the
checked_selection) provided field is

selected or not.

void log() Puts the value into
log. Example: { f1
=5}or{f2:=

Other member "abc” }.
functions boolean is_present() Returns whether

the value is
present.

boolean is_bound() Returns whether

the value is bound.

boolean is_value() Returns whether
the value is a
value.

void clean_up() Deletes the value,
setting it to
unbound.

void encode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

void decode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

Using the value of an unbound union variable for anything will cause dynamic test case error.

The anytype

The TTCN-3 anytype is implemented as a Java class named anytype. It has the same interface as any
other Java class generated for a union, with a few differences:

If a field is a built-in type or the address type, the name used in union_selection_type is the name of
the runtime class implementing the type.

104

If a field is a user-defined type, the mapping rules in Mapping of Names and Identifiers above
apply.

The names of field accessor functions are prefixed with get_field_ or constGet_field_ as with other
unions.

For example, for the following module

module anyuser {
type record myrec {}

control {
var anytype v_at;
}
}
with {
extension Danytype integer, myrec, charstringl

}

The generated class name will be "anytype". The union_selection_type enumerated type will be:

enum union_selection_type { UNBOUND_VALUE, ALT_TitanInteger, ALT_myrec,
ALT_TitanCharString };

The field accessor methods will be:

TitanInteger get_field_TitanInteger();
myrec get_field_myrec();
TitanCharString get_field_TitanCharString();

12.4.3. Record of Type Construct

The TTCN-3 type construct record of makes a variable length sequence from one given type. This
construct is implemented as a Java class.

Let us consider the following example type definition. The type t1 can be arbitrary.
type record of t1 t2;

This definition will be translated to a Java class that will be called t2.

There is an enum type called TitanNull_Type defined in the Base Library that has only one possible
value. NULL_VALUE stands for the empty "record of" value, that is, for {}.

Class t2 will have the following public member functions:

105

Table 29. Public member functions of the class t2

Constructors

Assignment
operator

Comparison
operators

Index operators

106

Member functions
t2()

t2(final TitanNull_Type nullValue)

t2(final t2 otherValue)

t2 operator_assign(final TitanNull_Type nullValue)

t2 operator_assign(final t2 otherValue)

t2 operator_assign(final Base_Type otherValue)

boolean operator_equals(final TitanNull_Type nullValue)

boolean operator_equals(final t2 otherValue)
boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final TitanNull_Type
nullValue)

boolean operator_not_equals(final t2 otherValue)

t1 get_at(final int index_value)

t1 get_at(final TitanInteger index_value)

tl constGet_at(final int index_value)

t1 constGet_at(final TitanInteger index_value)

Notes

Initializes to
unbound value.

Initializes to the
empty value.

Copy constructor.

Assigns the empty
value.

Assigns the given
value.

Returns true if the
two values are
equal and false
otherwise.

Gives access to the
given element.
Indexing begins
from zero. If this
element of the
variable was
never used before,
new (unbound)
elements will be
allocated up to
(and including)
this index.

Gives read-only
access to the given
element. Index
overflow causes
dynamic test case
error.

t2 rotate_left(final int rotate_count) Java equivalent of
operator <@.
(rotate left)

t2 rotate_left(final TitanInteger rotate_count)

Rotating operators . .)
t2 rotate_right(final int rotate_count) Java equivalent of

operator @>.
(rotate right)

t2 rotate_right(final TitanInteger rotate_count)

t2 operator_concatenate(final t2 other_value) Concatenates two
Concatenation arrays.

operator))
t2 operator_concatenate(final TitanNull_Type null_value)

107

Other member

108

functions

TitanInteger size_of()

void set_size(final int newSize)

t2 substr(final int index, final int returncount)

t2 replace(final int index, final int len, final t2
repl)

void log()

Returns the
number of
elements, that is,
the largest used
index plus one
and zero for the
empty value.

Sets the number of
elements to the
given value. If the
value has fewer
elements new
(unbound)
elements are
allocated at the
end. The excess
elements at the
end are erased if
the value has
more elements
than necessary.

Returns the
section of the
array specified by
the given start
index and length.

Returns a copy of
the array, where
the section
indicated by the
given start index
and length is
replaced by the
given array.

Puts the value into
log. Like {1, 2, 3 }.

boolean is_present()

boolean is_bound()

boolean is_value()

Other member
functions void clean_up()

void encode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

void decode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

Returns whether
the value is
present.

Returns whether
the value is bound.

Returns whether
the value is a
value.

Deletes the value,
setting it to
unbound.

A record of value is unbound if no value has been assigned to it or it has at least one unbound
element. Using the value of an unbound record of variable for anything will cause dynamic test

case error.

Starting with the largest index improves performance when filling a record of value.

Pre-generated record of and set of constructs

The Java classes for the record of and set of constructs of most predefined TTCN-3 types are pre-
generated and part of the TITAN runtime. For instances of these types declared in TTCN-3 and
ASN.1 modules only their pre-generated names are used (and a comment telling which type
definition it is representing). There is a class with regular memory allocation and one with
optimized memory allocation pre-generated for each type. These classes are located in the

PreGenRecordOf class inside the runtime.

Table 30. Pre-generated classes for record of/set of predefined types

C++ class name Equivalent type in TTCN-3
PREGEN__RECORD__OF __BOOLEAN record of boolean
PREGEN__RECORD__OF _INTEGER record of integer
PREGEN__RECORD__OF __FLOAT record of float
PREGEN__RECORD__OF __BITSTRING record of bitstring
PREGEN__RECORD__OF __HEXSTRING record of hexstring
PREGEN__RECORD__OF __OCTETSTRING record of octetstring
PREGEN__RECORD__OF _CHARSTRING record of charstring
PREGEN__RECORD__OF _UNIVERSAL__CHARSTRING record of universal charstring
PREGEN__RECORD__OF _BOOLEAN__OPTIMIZED record of boolean with { extension

"optimize:memalloc" }

109

C++ class name Equivalent type in TTCN-3

PREGEN__RECORD__OF _INTEGER__OPTIMIZED record of integer with { extension
"optimize:memalloc" }
PREGEN__RECORD__OF _FLOAT__OPTIMIZED record of float with { extension
"optimize:memalloc" }
PREGEN__RECORD__OF _BITSTRING__OPTIMIZED record of bitstring with { extension
"optimize:memalloc" }
PREGEN__RECORD__OF __HEXSTRING__OPTIMIZED record of hexstring with { extension

"optimize:memalloc" }

PREGEN__RECORD__OF _OCTETSTRING__OPTIMIZED record of octetstring with { extension
"optimize:memalloc" }

PREGEN__RECORD__OF _CHARSTRING__OPTIMIZED record of charstring with { extension
"optimize:memalloc" }

PREGEN__RECORD__OF __UNIVERSAL__CHARSTRING__OPT record of universal charstring with {

IMIZED extension "optimize:memalloc" }

PREGEN__SET__OF __BOOLEAN set of boolean

PREGEN__SET__OF __INTEGER set of integer

PREGEN__SET__OF __FLOAT set of float

PREGEN__SET__OF _BITSTRING set of bitstring

PREGEN__SET__OF _HEXSTRING set of hexstring

PREGEN__SET__OF __OCTETSTRING set of octetstring

PREGEN__SET__OF__CHARSTRING set of charstring

PREGEN__SET__OF __UNIVERSAL__CHARSTRING set of universal charstring

PREGEN__SET__OF __BOOLEAN__OPTIMIZED set of boolean with { extension
"optimize:memalloc" }

PREGEN__SET__OF __INTEGER__OPTIMIZED set of integer with { extension
"optimize:memalloc" }

PREGEN__SET__OF _FLOAT__OPTIMIZED set of float with { extension
"optimize:memalloc" }

PREGEN__SET__OF__BITSTRING__OPTIMIZED set of bitstring with { extension
"optimize:memalloc" }

PREGEN__SET__OF __HEXSTRING__OPTIMIZED set of hexstring with { extension
"optimize:memalloc" }

PREGEN__SET__OF __OCTETSTRING__OPTIMIZED set of octetstring with { extension
"optimize:memalloc" }

PREGEN__SET__OF __CHARSTRING__OPTIMIZED set of charstring with { extension

"optimize:memalloc" }

PREGEN__SET__OF __UNIVERSAL__CHARSTRING__OPTIMI set OF\ universal charstring with { extension
ZED "optimize:memalloc" }

12.4.4. Set of Type Construct

The set of construct of TTCN-3 is implemented similarly to record of. The external interface of this
class is exactly the same as in case of record of. For more details please see the previous section.

In the internal implementation only the equality operator differs. Unlike in record of, it considers

110

the unordered property of the set of type construct, that is, it returns true if it is able to find
exactly one pair for each element.

The index is a unique identifier for a set of element because the Java class does not reorder the
elements when a new element is added or an element is modified. The copy constructor also keeps
the original order of elements.

12.4.5. Enumerated Types

The TTCN-3 enumerated type construct is implemented as a Java class with an embedded enum type.
type enumerated Day { Monday (1), Tuesday, Wednesday (3) };

The example above will result in the following, very similar Java enum type definition which is
embedded in the Java class Day:

public enum enum_type {
Monday (1),
Tuesday (0),
Wednesday (3),
UNKNOWN_VALUE(2),
UNBOUND_VALUE(4);

The automatic assignment of numeric values is done according to the standard. Note that there are
two extra enumerated values in Java, which stand for the unknown and unbound values. They are
used in the conversion functions described below. The Java code generator assigns the smallest two
non-negative integer numbers that are not used by the user-defined enumerated values to the
unknown and unbound values.

When using the Java enum type and its values from user code the names must be prefixed with the
Java class name. The enum type in the above example can be referenced with Day.enum_type, its
values can be accessed as Day.enum_type.Monday, Day.enum_type.Tuesday, and so on.

The class Day will have the following public member functions:

Table 31. Public member functions of the class Day

Member functions Notes

111

112

Constructors

Assignment
operator

Comparison
operators

Day()

Day(final int otherValue)

Day(final Day.enum_type otherValue)

Day(final Day otherValue)

Day operator_assign(final int otherValue)

Day operator_assign(final Day.enum_type otherValue)

Day operator_assign(final Day otherValue)

Day operator_assign(final Base_Type otherValue)

boolean operator_equals(final Day.enum_type otherValue)

boolean operator_equals(final Day otherValue)
boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final Day.enum_type
otherValue)

boolean operator_not_equals(final Day otherValue)

boolean operator_not_equals(final Base_Type otherValue)

Initializes to
unbound value.

Converts the given
numeric value to
Day.enum_type
and initializes to
it. Only valid
values are
accepted.

Initializes to a
given value.

Copy constructor.

Converts the given
numeric value to
Day.enum_type
and assigns it.
Only valid values
are accepted.

Assigns the given
value.

Returns true if the
two values are
equal and false
otherwise.

Comparison
operators

Static conversion
functions

Non-static
conversion
functions

boolean is_less_than(final Day.enum_type otherValue)
boolean is_less_than(final Day otherValue)

boolean is_less_than_or_equal(final Day.enum_type
otherValue)

boolean is_less_than_or_equal(final Day otherValue)
boolean is_greater_than(final Day.enum_type otherValue)
boolean is_greater_than(final Day otherValue)

boolean is_greater_than_or_equal(final Day.enum_type
otherValue)

boolean is_greater_than_or_equal(final Day otherValue)

static String enum_to_str(final enum_type enumPar) See below.
static enum_type str_to_enum(final String strPar)

static boolean is_valid_enum(final int other value)

boolean is_valid_enum(final enum_type other_value)

static int enum2int(final Day enumPar)

static int enum2int(final Day.enum_type enumPar)

int as_int(); See below
void from_int(final int intValue);

void int2enum(final int intValue);

void int2enum(final TitanInteger intValue);

113

void log() Puts the value into
log. Like this:

Monday

boolean is_preset() Returns whether
the value is
present.

boolean is_bound() Returns whether

the value is bound.

boolean is_value() Returns whether
the value is a
value.

Other member
functions

void clean_up() Deletes the value,
setting it to
unbound.

void encode(final TTCN_Typedescriptor p_td, final

TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

void decode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

The static member function Day.enum_to_str converts the given parameter of type Day.enum_type to
a Java String. It returns the string "<unknown>", if the input is not a valid value of the TTCN-3
enumerated type. The returned string is read-only.

The function Day.str_to_enum does the conversion in the reverse direction. It converts the symbolic
enumerated identifier represented by a Java String back to the Day.enum_type equivalent. It returns
the value Day.UNKNOWN_VALUE if the input string is not the equivalent of any of the possible values in
the enumerated type.

In the above two functions the strings are treated case sensitive and they shall not contain any
whitespace or other characters that are not part of the enumerated value. In case of ASN.1
ENUMERATED types the strings used by enum_to_str, str_to_enum and log represent the TTCN-3 view of
the enumerated value, that is, the hyphenation characters are mapped to a single underscore
character. For example, if an ASN.1 enumerated type has a value with name my-enum-value and
numeric value 2, the function enum_to_str will return the string "my_enum_value" if the input
parameter equals to 2. Of course, its Java equivalent will be my_enum_value with numeric value 2.

Static member function Day.is_valid_enum returns the boolean value true if there is a defined
enumerated value having numeric value equal to the int parameter and false otherwise.

The static member function Day.enum_to_int converts the given parameter of type Day or
Day.enum_type to its numeric value. The member function as_int does the same thing for the
enumerated instance.

The member function int_to_enum initializes the enumerated instance with the enumerated value
having numeric value equal to the given int parameter. A dynamic test case error is displayed if

114

there is no such enumerated value. The member function from_int does the same thing.

If a value of type int is passed to the constructor or assignment operator the value is accepted only
if it is a numerical representation of a valid enumerated value, that is, the function is_valid_enum
returns true. A dynamic test case error occurs otherwise.

To avoid run-time errors at the decoding of invalid messages the Test Port writer should use the
constructor or assignment operator in this way:

Day myDayVar;
int myIntVar = buffer[position];
if (Day.is_valid_enum(myIntVar)) {
myDayVar = new Day(myIntVar);
} else {
myDayVar = new Day(Day.enum_type.UNKNOWN_VALUE);
}

Using the value of an unbound enumerated variable for anything will cause dynamic test case
error.

12.4.6. The address Type

The special TTCN-3 data type address is represented in Java as if it was a regular data type. The
name of the equivalent Java class is ADDRESS.

12.5. Predefined Functions

Annex C of Methods for Testing and Specification (MTS); The Testing and Test Control Notation
version 3. Part 1: Core Language European Telecommunications Standards and Annex B of Methods
for Testing and Specification (MTS); The Testing and Test Control Notation version 3. Part 7: Using
ASN.1 with TTCN-3 European Telecommunications define a couple of predefined functions. Most of
them perform conversion between the built-in types of TTCN-3. In our test executor these functions
are implemented in the Base Library in Java language. They are available not only in TTCN-3 , but
they can be called directly from Test Ports as well.

The implementation of these functions can be found in the class AdditionalFunctions in the runtime
library, but for easier navigation we list them also in the present document.

The majority of these functions have more than one polymorphic version: when appropriate, one
of them takes literal (built-in) Java types as arguments instead of the objects of equivalent Java
classes. For instance, if the incoming argument is stored in an int variable in your Java code, you
should not construct a temporary object of class TitanInteger because passing an int is faster and
produces smaller binary code. Similarly, the returned type is also literal when it is possible.

12.5.1. Integer to character

115

https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.05.01_60/es_20187301v040501p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.05.01_60/es_20187301v040501p.pdf
https://pdfs.semanticscholar.org/33b5/877c85f7fd4f35c7f58c39121358c3652966.pdf
https://pdfs.semanticscholar.org/33b5/877c85f7fd4f35c7f58c39121358c3652966.pdf
https://pdfs.semanticscholar.org/33b5/877c85f7fd4f35c7f58c39121358c3652966.pdf

TitanCharString int2char(final int value);
TitanCharString int2char(final TitanInteger value);

12.5.2. Character to integer

TitanInteger char2int(final char value);

TitanInteger char2int(final String value);

TitanInteger char2int(final TitanCharString value);
TitanInteger char2int(final TitanCharString_Element value);

12.5.3. Integer to universal character

TitanUniversalCharString int2unichar(final int value);
TitanUniversalCharString int2unichar(final TitanInteger value);

12.5.4. Universal character to integer

TitanInteger unichar2int(final TitanUniversalChar value);
TitanInteger unichar2int(final TitanUniversalCharString value);
TitanInteger unichar2int(final TitanUniversalCharString_Element value);

12.5.5. Bitstring to integer

TitanInteger bit2int(final TitanBitString value);
TitanInteger bit2int(final TitanBitString_Element value);

12.5.6. Hexstring to integer

TitanInteger hex2int(final TitanHexString value);
TitanInteger hex2int(final TitanHexString_Element value);

12.5.7. Octetstring to integer

TitanInteger oct2int(final TitanOctetString value);
TitanInteger oct2int(final TitanOctetString_Element value);

12.5.8. Charstring to integer

116

TitanInteger str2int(final String value);
TitanInteger str2int(final TitanCharString value);
TitanInteger str2int(final TitanCharString_Element value);

12.5.9. Integer to bitstring

TitanBitString int2bit(final int value, final int length);

TitanBitString int2bit(final int value, final TitanInteger length);
TitanBitString int2bit(final TitanInteger value, final int length);
TitanBitString int2bit(final TitanInteger value, final TitanInteger length);

12.5.10. Integer to hexstring

TitanHexString int2hex(final int value, final int length);

TitanHexString int2hex(final int value, final TitanInteger length);
TitanHexString int2hex(final TitanInteger value, final int length);
TitanHexString int2hex(final TitanInteger value, final TitanInteger length)

12.5.11. Integer to octetstring

TitanOctetString int2oct(final int value, final int length);

TitanOctetString int2oct(final int value, final TitanInteger length);
TitanOctetString int2oct(final TitanInteger value, final int length);
TitanOctetString int2oct(final TitanInteger value, final TitanInteger length);

12.5.12. Integer to charstring

TitanCharString int2str(final int value);
TitanCharString int2str(final TitanInteger value);

12.5.13. Length of string Type

This function is built into the equivalent Java classes of all TTCN-3 string types:

TitanInteger <any_string_type>.lengthof() const;

12.5.14. Number of elements in a structured type

This function is built into the Java template classes of record of and set of types:

117

TitanInteger <any_record_of_or_set_of_type>.size_of() const;

This function is currently not implemented for record and set types.

12.5.15. The IsPresent Function

This function is built into the wrapper Java generic class Optional:

boolean <any_optional_field>.ispresent() const;

12.5.16. The IsChosen Function

These functions are built into the equivalent Java classes of TTCN-3 union types:

boolean <union_type>.ischosen(
<union_type>.union_selection_type checked_selection) const;

12.5.17. The regexp Function

TitanCharString regexp(final TitanCharString instr, final TitanCharString expression,
final TitanInteger groupno, final boolean nocase);

TitanUniversalCharString regexp(final TitanUniversalCharString instr, final
TitanUniversalCharString expression, final TitanInteger groupno, final boolean
nocase);

12.5.18. Bitstring to charstring

TitanCharString bit2str(final TitanBitString value);
TitanCharString bit2str(final TitanBitString_Element value);

12.5.19. Hexstring to charstring

TitanCharString hex2str(final TitanHexString value);
TitanCharString hex2str(final TitanHexString_Element value);

12.5.20. Octetstring to charstring

TitanCharString oct2str(final TitanOctetString value);
TitanCharString oct2str(final TitanOctetString_Element value);

118

12.5.21. Character string to octetstring

TitanOctetString str2oct(final String value);
TitanOctetString str2oct(final TitanCharString value);

12.5.22. Bitstring to hexstring

TitanHexString bit2hex(final TitanBitString value);
TitanHexString bit2hex(final TitanBitString_Element value);

12.5.23. Hexstring to octetstring

TitanOctetString hex2oct(final TitanHexString value);
TitanOctetString hex2oct(final TitanHexString_Element value)

12.5.24. Bitstring to octetstring

TitanOctetString bit2oct(final TitanBitString value);
TitanOctetString bit2oct(final TitanBitString_Element value)

12.5.25. Hexstring to bitstring

TitanBitString hex2bit(final TitanHexString value);
TitanBitString hex2bit(final TitanHexString_Element value);

12.5.26. Octetstring to hexstring

TitanHexString oct2hex(final TitanOctetString value);
TitanHexString oct2hex(final TitanOctetString_Element value);

12.5.27. Octetstring to bitstring

TitanBitString oct2bit(final TitanOctetString value);
TitanBitString oct2bit(final TitanOctetString_Element value);

12.5.28. Integer to float

TitanFloat int2float(final int value);
TitanFloat int2float(final TitanInteger value);

119

12.5.29. Float to integer

TitanInteger float2int(final double value);
TitanInteger float2int(final TitanFloat value);

12.5.30. The Random Number Generator Function

The implementation is based on java.util.Random.

TitanFloat rnd();
TitanFloat rnd(final double seed);
TitanFloat rnd(final TitanFloat seed);

12.5.31. The Substring Function

Implemented for all string types.

TitanBitString substr(final TitanBitString value, final int idx, final int
returncount);

TitanBitString substr(final TitanBitString value, final int idx, final TitanInteger
returncount);

TitanBitString substr(final TitanBitString value, final TitanInteger idx, final int
returncount);

TitanBitString substr(final TitanBitString value, final TitanInteger idx, final
TitanInteger returncount);

TitanHexString substr(final TitanHexString value, final TitanInteger idx, final
TitanInteger returncount);

TitanOctetString substr(final TitanOctetString value, final TitanInteger idx, final
TitanInteger returncount);

TitanCharString substr(final TitanCharString value, final TitanInteger idx, final
TitanInteger returncount);

TitanUniversalCharString substr(final TitanUniversalCharString value, final
TitanInteger idx, final TitanInteger returncount);

And its versions for the _Element types.

12.5.32. Character string to float

TitanFloat str2float(final String value);
TitanFloat str2float(final TitanCharString value);

12.5.33. The Replace Function

Implemented for all string types.

120

TitanBitString replace(final TitanBitString value, final int idx, final int len, final
TitanBitString repl);

TitanBitString replace(final TitanBitString value, final int idx, final TitanInteger
len, final TitanBitString repl);

TitanBitString replace(final TitanBitString value, final TitanInteger idx, final int
len, final TitanBitString repl);

TitanBitString replace(final TitanBitString value, final TitanInteger idx, final
TitanInteger len, final TitanBitString repl);

TitanHexString replace(final TitanHexString value, final TitanInteger idx, final
TitanInteger len, final TitanHexString repl);

TitanOctetString replace(final TitanOctetString value, final TitanInteger idx, final
TitanInteger len, final TitanOctetString repl);

TitanCharString replace(final TitanCharString value, final TitanInteger idx, final
TitanInteger len, final TitanCharString repl);

TitanUniversalCharString replace(final TitanUniversalCharString value, final
TitanInteger idx, final TitanInteger len, final TitanUniversalCharString repl);

12.5.34. Octetstring to character string

TitanCharString oct2char(final TitanOctetString value);
TitanCharString oct2char(final TitanOctetString_Element value);

12.5.35. Character string to octetstring

TitanOctetString char2oct(final String value);
TitanOctetString char2oct(final TitanCharString value);
TitanOctetString char2oct(final TitanCharString_Element value);

12.5.36. The Decompose Function

Not implemented yet.

12.5.37. Additional Non-Standard Functions

121

TitanBitString str2bit(final String value);

TitanBitString str2bit(final TitanCharString value);
TitanBitString str2bit(final TitanCharString_Element value);
TitanHexString str2hex(final String value);

TitanHexString str2hex(final TitanCharString value);
TitanHexString str2hex(final TitanCharString_Element value);
TitanCharString float2str(final double value);
TitanCharString float2str(final TitanFloat value);

TitanCharString TitanCharString.tten_to_string(final Base_Type ttcn_data)

void TitanCharString.string_to_tten(final TitanCharString ttcn_string, final Base_Type
tten_value)

TitanUniversalCharString oct2unichar(final TitanOctetString value);
TitanUniversalCharString oct2unichar(final TitanOctetString value, final String
encodeStr);

TitanUniversalCharString oct2unichar(final TitanOctetString value, final
TitanCharString encodeStr);

TitanOctetString unichar2oct(final TitanUniversalCharString value);
TitanOctetString unichar2oct(final TitanUniversalCharString value, final
TitanCharString stringEncoding);

TitanOctetString unichar2oct(final TitanUniversalCharString value, final String
stringEncoding);

TitanCharString get_stringencoding(final TitanOctetString encoded_value);
TitanOctetString remove_bom(final TitanOctetString encoded_value);

TitanCharString encode_base64(final TitanOctetString msg, final TitanBoolean
use_linebreaks);

TitanCharString encode_base64(final TitanOctetString msg);

TitanOctetString decode_base64(final TitanCharString b64);

See the section "Additional predefined functions” in the Programmer"s Technical Reference for
more details.

12.6. Using the Signature Classes

A Test Port has three outgoing and three incoming types of operation that require the usage of
signatures. These are call (getcall), reply (getreply) and raise (catch). Because of this, there are
three representation formats (classes generated by the Java code generator) of a signature the Test
Port writer should be familiar with. This section describes these classes using an example.

Let us suppose the following signature definition:

122

https://gitlab.eclipse.org/eclipse/titan/titan.core/tree/master/usrguide/referenceguide

signature MyProc(in integer inPar, out float outPar,
inout bitstring inoutPar)
return hexstring
exception(charstring, integer, boolean);

The classes generated and needed to write a Test Port using this signature are MyProc_call,
MyProc_reply and MyProc_exception. These represent the parameters, the return value and the
exception type and value of the signature needed by a call, reply or raise.

For example, if a port uses the signature MyProc as an output remote procedure, the Test Port gets
the outgoing parameters for a call operation towards the system in an instance of the class
MyProc_call. In this case the classes MyProc_reply and MyProc_exception are used for placing an
incoming reply or raise operation in the queue of the port (using the functions incoming_reply and
incoming_exception of the port class).

12.6.1. The Representation of the Input Parameters

The class MyProc_call (using the above example) represents all incoming parameters of the
signature MyProc. It temporary stores the parameters inPar and inoutPar.

The generated class MyProc_call will have the following public member functions:

Table 32. Public member functions of the class MyProc_call

Member functions Notes

TitanInteger get_field_inPar() Gives access to parameter

inPar.
TitanInteger
constGet_field_inPar()

Parameter access functions) o o
TitanBitString The same, but it gives read-only
get_field_inoutPar() access.

TitanBitString
constGet_field_inoutPar()
Other member functions void log() Puts the parameters into log.

The parameters can be accessed via their access functions that have the same names as the
parameters (name mapping also applies to these functions).

12.6.2. The Output Parameters and Return Value

The output parameters and return value (if defined) are represented by the class MyProc_reply that
has the following public member functions:

Table 33. Public member functions of the class MyProc_reply

Member functions Notes

123

Parameter access functions

Access function for return value

Other member functions

TitanFloat get_field_outPar()

TitanFloat
constGet_field_outPar()

TitanBitString
get_field_inoutPar()

TitanBitString
constGet_field_inoutPar()

TitanHexString
get_return_value()

TitanHexString
constGet_return_value()

void log()

Gives access to parameter
outPar.

The same, but it gives read-only
access.

Gives access to the return value.

Puts the parameters into log.

The parameters can be accessed by their access functions, and the return value can be accessed via

the function get_return_value().

12.6.3. Representation of Signature Exceptions

The class representing the exceptions of a signature (remote procedure) is similar to the
representation of the union data type. Using the above example this class is called MyProc_exception.
This class is generated only if the signature has at least one exception type.

Table 34. Public member functions of the class MyProc_exception

Member functions

Constructors

Assignment operator

124

MyProc_exception()

MyProc_exception(final
TitanCharString otherValue)

MyProc_exception(final
TitanInteger otherValue)

MyProc_exception(final
TitanBoolean otherValue)

MyProc_exception(final
MyProc_exception otherValue)

MyProc_exception
operator_assign(final
MyProc_exception otherValue)

Notes

Initializes to unbound value.

Copy constructor.

Assigns the given value.

TitanCharString Selects and gives access to the

get_field_TitanCharString() CHARSTRING field. If other field
was previously selected, its
value will be destroyed.

TitanCharString Gives read-only access to the
constGet_field_TitanCharString(CHARSTRING field. If other field
) is selected, this function will

cause dynamic test case error.

So use get selection() first.
Field access functions
TitanInteger

get_field_TitanInteger()

TitanInteger
constGet_field_TitanInteger()

TitanBoolean
get_field_TitanBoolean()

TitanBoolean
constGet_field_TitanBoolean()

exception_selection_type Returns the current selection. It

get_selection() will return MyProc
exception.UNBOUND VALUE if
the exception is unbound,
MyProc_exception.ALT_TitanCh

Other member functions arString if a charstring value is

present in the exception, and so
on.

void log() Puts the contents of the
exception into the log.

If an exception type is a user-defined type the field name will be constructed from the Java name of
the module that the exception type resides in and the name of the Java class that realizes the
exception type. The two identifiers are glued together using a single underscore character. Please
note that the module name is always present in the identifiers, even if the exception type is defined
in the same module as the signature.

For example, if exception type My_Record is defined in module My_Module the respective field access
functions will be named as My__Module_My__Record_field and the associated enum value will be
MyProc_exception.ALT_MyModule_MyRecord.

[8] The built-in verdict and boolean constants in TTCN-3 shall be written with all lowercase letters, such as true or pass. Although
previous compiler versions have accepted TRUE or PASS as well, these words are treated by the compiler as regular identifiers as
specified in the standard.

[9] This section deals with the record and set types that have at least one field. See Empty Types for the Java mapping of empty
record and set types.

125

Chapter 13. Tips & Troubleshooting

Information not fitting in any of the previous chapters is given in this chapter.

13.1. Type Aliasing

Type aliasing in TTCN-3 means that you can assign an alternative name to an existing type. The
syntax is similar to a subtype definition, but the subtype restriction tag (value list or length
restriction) is missing.

type MyType MyAlternativeName;

The type aliasing is implemented in the test executor, and it translates this TTCN-3 definition to a
Java class extension.

public static class MyAlternativeName extends MyType { }

public static class MyAlternativeName_template extends MyType_template { }

To keep in line with the C side, a semantic error will be reported when a port allows sending or
receiving both of the types.

As a work-around to this problem you can repeat the definition of the original type using the
alternative name instead of type aliasing. In this case two differently named, but identical classes
will be generated and the polymorphism problem will not occur.

13.2. Using External Java Functions in TTCN-3 Test
Suites

Sometimes standard library functions"” are called in the test suite or there is a need for efficiently
implemented "bit-crunching" functions in the TTCN-3 ATS. In these cases functions to be called
from the test suite can be developed in Java.

There are the standard library functions as well as other libraries in the Java functions. The logging
and error handling facilities of the run-time environment are also available as in case of Test Ports.

For example, the following definitions makes two Java functions accessible from TTCN-3 module
MyModule and from any other module that imports MyModule.

13.2.1. Example TTCN-3 Module (MyModule.ttcn)

126

module MyModule {
[...]

external function MyFunction(integer par1, in octetstring par2)

return bitstring;
external function MyAnotherFunction(inout My_Type parT,

out MyAnotherType par2);
[...]
+

The compiler will translate calls those external function definitions to calls to Java functions in the

generated files.

The Java side does not generate a function prototype for external functions. Only

NOTE
translates the calls of these functions into calls of Java functions.

Call of these function on TTCN-3:

[...]
MyFunction(1, ''0);
MyAnotherFunction(myVar, myAnotherVar);

[...]

Would be translated to call in Java:

[...]

MyModule_externalfunctions.MyFunction(new TitanInteger(1), new TitanOctetString("")

)

MyModule_externalfunctions.MyAnotherFunction(myVar, myAnotherVar);

[...]

The implementation of these function has to be placed in a class whose name is generated from the
module’s name by appending the "_externalfunctions" postfix, and this class has to be located in the

user_provided package.

Please note to locate the hand written Test Port and external function
NOTE implementations in a folder different, than were the Java code is generated. When
the project is cleaned, those folders are cleared.

An example implementation of the external functions in Java:

127

package org.eclipse.titan.MyProject.user_provided;

import org.eclipse.titan.MyProject.generated.MyModule.MyAnotherType;
import org.eclipse.titan.MyProject.generated.MyModule.My__Type;
import org.eclipse.titan.runtime.core.TitanInteger;

import org.eclipse.titan.runtime.core.TitanOctetString;

public class MyModule_externalfunctions {

public static void MyFunction(final TitanInteger titanInteger, final
TitanOctetString titanOctetString) {

}

public static void MyAnotherFunction(final My__Type myVar, final MyAnotherType
myAnotherVar) {

}

Both pre-defined and user-defined TTCN-3 data types can be used as parameters and/or return
types of the Java functions. The detailed description of the equivalent Java classes as well as the
name mapping rules are described in chapter Mapping of Names and Identifiers.

Using templates as formal parameters in external functions is possible, but not recommended
because the API of the classes realizing templates is not documented and subject to change without
notice.

The formal parameters of external TTCN-3 functions are mapped to Java function parameters
according to the following table:

Table 35. TTCN-3 formal parameters and their Java equivalents

TTCN-3 formal parameter Its Java equivalent
[in] MyType myPar MyType myPar

out MyType myPar MyType myPar

inout MyType myPar MyType myPar

[in] template MyType myPar Not recommended.

Due to the strictness of the TTCN-3 semantic analyzer one cannot use Java data types with external
functions as formal parameters or return types, only TTCN-3 and ASN.1 data types are allowed.

The name, return type and the parameters of the implemented Java functions must match exactly
the expected function signature or the compilation will fail.

13.3. Logging in Test Ports or External Functions

When developing Test Ports or external functions the need may arise for debug messages. Instead

128

of using System.out.println, there is a simple way to put these messages into the log file of test
executor. This feature can be also useful in case when an error or warning situation is encountered
in the Test Port, especially when decoding an incoming message.

There is a class called TTCN_Logger in the Base Library, which takes care of logging. Since all member
functions of TTCN_Logger are static, they can be and should be called without instantiating a logger
object.

The class TTCN_Logger provides some public member functions. Using them any kind of message can
be put into the log file. There are two ways to log a single message, the unbuffered and the buffered
mode.

13.3.1. Unbuffered Mode

In unbuffered mode the message will be put into log immediately as a separate line together with a
time stamp. Thus, the entire message must be passed to the logger class at one function call. The log
member function of the logger class should be used. Its prototype is:

log(final Severity msg_severity, final String formatString, final Object... args);

The parameter severity is used for filtering the log messages. The allowed values of the parameter
are listed in table "First level (coarse) log filtering" in the Programmer’s Technical Reference. We
recommend using in Test Ports only TTCN_WARNING, TTCN_ERROR and TTCN_DEBUG. The parameter
formatString is a format string, which is interpreted as in the String.format function. The dots
represent the optional additional parameters that are referred in format string. There is no need to
put a newline character at the end of format string; otherwise the log file will contain an empty line
after your entry.

Here is an example, which logs an integer value:

int myVar = 5;
TTCN_Logger.log(Severity.WARNING_UNQUALIFIED, "myVar = %d", myVar);;

Sometimes the string to be logged is static. In such cases there is no need for printf-style argument
processing, which may introduce extra risks if the string contains the character %. The logger class
offers a function for logging a static (or previously assembled) string:

void log_str(final Severity msg_severity, final String string);

The function log_str runs significantly faster than log because it bypasses the interpretation of the
argument string.

13.3.2. Buffered Mode

As opposite to the unbuffered operation, in buffered mode the logger class stores the message
fragments in a temporary buffer. New fragments can be added after the existing ones. When

129

https://gitlab.eclipse.org/eclipse/titan/titan.core/tree/master/usrguide/referenceguide

finished, the fragments can be flushed after each other to the log file as a simple message. This
mode is useful when assembling the message in many functions since the buffer management of
logger class is more efficient than passing the fragments as parameters between the functions.

In buffered mode, the following member functions are available.

begin_event

begin_event creates a new empty event buffer within the logger. You have to pass the severity value,
which will be valid for all fragments (the list of possible values can be found in the table "First level
(coarse) log filtering" in the Technical Reference. If the logger already has an unfinished event
when begin event is called the pending event will be pushed onto an internal stack of the logger.
That event can be continued and completed after finishing the newly created event.

void begin_event(final Severity msg_severity);

log_event

log_event appends a new fragment at the end of current buffer. The parameter fmt contains a
printf format string like in unbuffered mode. If you try to add a fragment without initializing the
buffer by calling begin event, your fragment will be discarded and a warning message will be
logged.

void log_event(final String formatString, final Object... args)

log_char

log_char appends the character c at the end of current buffer. Its operation is very fast compared to
log_event.

void log_char(final char c);

log_event_str and log_event_va_list

The functions log_str and log_va_list also have the buffered versions called log_event_str and
log_event_va_list, respectively. Those interpret the parameters as described in case of unbuffered
mode.

void log_event_str(final String string);
void log_event_va_list(final String formatString, final Object... args);

log

The Java classes of predefined and compound data types are equipped with a member function
called log. This function puts the actual value of the variable at the end of current buffer. Unbound

130

https://gitlab.eclipse.org/eclipse/titan/titan.core/tree/master/usrguide/referenceguide

variables and fields are denoted by the symbol <unbound>. The contents of TTCN-3 value objects can
be logged only in buffered mode.

void <any TTCN-3 type>.log();

end_event

The function end_event flushes the current buffer into the log file as a simple message, then it
destroys the current buffer. If the stack of pending events is not empty the topmost event is popped
from the stack and becomes active. The time stamp of each log entry is generated at the end and not
at the beginning. If there is no active buffer when end_event is called, a warning message will be
logged.

void end _event();

If an unbuffered message is sent to the logger while the buffer contains a pending event the
unbuffered message will be printed to the log immediately and the buffer remains unchanged.

13.3.3. Logging Format of TTCN-3 Values and Templates

TTCN-3 values and templates can be logged in the following formats:

TITAN legacy logger format: this is the default format which has always been used in TITAN
TTCN-3 format: this format has ttcn-3 syntax, thus it can be copied into TTCN-3 source files.

Differences between the formats:

Value/template Legacy format output TTCN-3 format output
Unbound value "<unbound>"

Uninitialized template "<uninitialized template>"

Enumerated value name (number) name

The "-" symbol is the NotUsedSymbol which can be used inside compound values, but when logging
an unbound value which is not inside a record or record of the TTCN-3 output format of the logger
is actually not a legal TTCN-3 value/template because a value or template cannot be set to be
unbound. Thus this output format can be copy-pasted from a log file into a ttcn-3 file or to a module
parameter value in a configuration file only if it semantically makes sense.

The Java API extensions to change the logging format:

A new enum type for the format in TTCN_Logger class:+ enum data_log_format_t { LF_LEGACY,
LF_TTCN };;

Static functions to get/set the format globally:

data_log_format_t get_log_format(); void set_log_format(final data_log_format_t
p_data_log_format).

131

Please note that Logger_Format_Scope is not yet support by the Java side of the Test
Executor.

NOTE

13.3.4. Examples

The example below demonstrates the combined usage of buffered and unbuffered modes as well as
the working mechanism of the event stack:

TTCN_Logger.begin_event(Severity.DEBUG_UNQUALIFIED);
TTCN_Logger.log_event_str("first ");
TTCN_Logger.begin_event(Severity.DEBUG_UNQUALIFIED);
TTCN_Logger.log_event_str("second ");
TTCN_Logger.log_str(Severity.DEBUG_UNQUALIFIED, "third message");
TTCN_Logger.log_event_str("message");

TTCN_Logger.end_event();

TTCN_Logger.log_event_str("message");

TTCN_Logger.end_event();

The above code fragment will produce three lines in the log in the following order:
third message second message first message

If the code calls a Java function that might throw an exception while the logger has an active event
buffer care must be taken that event is properly finished during stack unwinding. Otherwise the
stack of the logger and the call stack of the program will get out of sync. The following example
illustrates the proper usage of buffered mode with exceptions:

TTCN_Logger.begin_event(Severity.DEBUG_UNQUALIFIED);

try {
TTCN_Logger.log_event_str("something");
// a function is called from here
// that might throw an exception (for example TtcnError)
TTCN_Logger.log_event_str("something else");
TTCN_Logger.end_event();

+ finally {
// donit forget about the pending event
TTCN_Logger.end_event();

}

13.4. Reusing Logged Values or Templates in TTCN-3
Code

Writing templates can be time-consuming task. To save some time and work, you can use the logs of
the messages already sent or received to write templates.

If you would like to use a logged value in TTCN-3 code, then using the logformat utility (see the

132

section 13.3 of the TITAN User Guide [13] about this utility) you have to follow these steps:

1. Start a text editor and open the (formatted) log file and the TTCN-3 source file.
2. Select and copy the desired value from the log file.

3. Paste the value at the corresponding position in the TTCN-3 code.

4. Finally, make the following changes:

o The enumerated values are followed by their numerical equivalents within parentheses.
Delete them including the parentheses.

o If an octetstring value contains only visible ASCII characters, then the hexadecimal
octetstring notation is followed by its character string representation between quotation
marks and parentheses. Delete the character string (including the parentheses).

o If a record, set, record of or set of value contains no fields or elements, then the logformat
utility changes the value from {} to {(empty)} in the log. Delete the word (empty) (including
parentheses).

13.5. Using the TTCN-3 Preprocessing Functionality

This feature, as preprocessors in general, should be avoided if not absolutely
necessary.

NOTE

The Designer has some support for preprocessing preprocessable files according to the rules of the
C preprocessor.

The options governing how preprocessable files inside a project are preprocessed can be set via
right clicking on the project and selecting "Properties"/"TITAN Java Project Properties” and in the
window that appears on the "TTCN-3 Preprocessor” page and its sub-pages.

* On the Symbols (define, undefine) page it is possible to define or undefine symbols that will be
available for the preprocessor.

* On the Include directories page it is possible to set a list of folders which will be used to find
#includ -ed files, during preprocessing.

Tips for using the preprocessor:

* Don’t. The preprocessor feature should only be used when absolutely necessary.

o Several preprocessor features are used to generate or hide parts of the source code. This can
make it harder for people to understand the code. Makes the use of advanced refactoring
features unsafe.

o The extra cost of preprocesing adds to the duration of the build process.

o As several preprocessing feature are used to hide information from the tools, and external
factors (like environmental variables, files included from outside) can have an effect on the
result ... any modification will trigger a preprocessing of all the .ttcnpp files, the semantic
checking of all modules directly or indirectly importing them, and probably the re-
generation of the affected modules.

133

* On the Java side there is no intermediate file generated as all of the processing steps are done
in-memory for performance reasons.

There are minor issues when precompiling TTCN-3 code with the preprocessor, these are resulting
from the differences between the C and TTCN-3 languages. Tips for writing the . ttcnpp files:

* Do not define the B, O and H macros, these letters are used as part of the bitstring, octetstring
and hexstring tokens in TTCN-3, but the preprocessor will replace them.

* There are some predefined macros in the preprocessor which will be always replaced, do not
use any TTCN-3 identifier identical to these. These macros start with double underscore
followed by uppercase letters. Some of the most common macros which might be useful:

o — FILE This macro expands to the name of the current input file, in the form of a C string
constant.

o — LINE This macro expands to the current input line number, in the form of a decimal
integer constant.

o — DATE This macro expands to a string constant that describes the date on which the
preprocessor is being run.

o — TIME This macro expands to a string constant that describes the time at which the
preprocessor is being run.

When writing preprocessor directives keep in mind that within the directive the C preprocessor
syntax is in use, not the TTCN-3. Operators such as defined or | | can be used.

Watch out for macro pitfalls, some well known are: side effects, misnesting, and operator
precedence problems.

13.6. Error Recovery during Test Execution

If a fatal error is encountered in the Test Port, you should throw a TtcnError exception to do the
error handling. It has the following prototype in the Base Library:

TtenError(final String errorMessage);

The error handling in the executable test program is implemented using Java exceptions. This
exception is normally caught at the end of each test case and module control part. Finally, the
verdict is set to error and the test executor performs an error recovery, so it continues the
execution with the next test case.

It is not recommended to use own error recovery combined with the default method (that is,
catching this exception).

[10] Java language functions cannot be called directly from TTCN-3; you need at least a wrapper function for them.

134

Chapter 14. References

* [1] Methods for Testing and Specification (MTS); The Testing and Test Control Notation version
3. Part 1: Core Language European Telecommunications Standards Institute ES 201 873-1
Version 4.1.1, July 2009

* [2] Methods for Testing and Specification (MTS); The Testing and Test Control Notation version
3. Part 4: TTCN-3 Operational Semantics European Telecommunications Standards Institute. ES
201 873-4 Version 4.1.1, June 2009

* [3] Methods for Testing and Specification (MTS); The Testing and Test Control Notation version
3. Part 7: Using ASN.1 with TTCN-3 European Telecommunications Standards Institute. ES 201
873-7 Version 4.1.1, July 2009

* [4] Methods for Testing and Specification (MTS); The Testing and Test Control Notation version
3. Part 9: Using XML Schema with TTCN-3 European Telecommunications Standards Institute.
ES 201 873-9 Version 4.1.1, June 2009

* [5] Methods for Testing and Specification (MTS); The Testing and Test Control Notation version
3. TTCN-3 Language Extensions: Behaviour Types European Telecommunications Standards
Institute. ES 202 785 Version 1.5.1, Aug 2017

* [6] ITU-T, X.680, Information TechnologyAbstract Syntax Notation One (ASN.1): Specification of
basic notation International Telecommunication Union, July 2002

* [7] ITU-T, X.681, Information TechnologyAbstract Syntax Notation One (ASN.1): Information
object specification International Telecommunication Union, July 2002

* [8] ITU-T, X.682, Information Technology Abstract Syntax Notation One (ASN.1): Constraint
specification International Telecommunication Union, July 2002

* [9] ITU-T, X.683, Information TechnologyAbstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specification International Telecommunication Union, July 2002

* [10] ITU-T, X.690, Information TechnologyASN.1 encoding rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER)International Telecommunication Union, July 2002

* [11] ISO/IEC 10646-1, Information technology — Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane, Second edition, 200009-15

* [12] RFC3629: UTF-8, a transformation format of ISO 10646
e [13] User Guide for TITAN TTCN-3 Test Executor

* [14] Installation guide for TITAN TTCN-3 Test Executor

» [15] Release Notes for TITAN TTCN-3 Test Executor

* [16] API Technical Reference for TITAN TTCN-3 Test Executor

135

https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.01.01_60/es_20187301v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.01.01_60/es_20187301v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.01.01_60/es_20187301v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187304/04.01.01_60/es_20187304v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187304/04.01.01_60/es_20187304v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187304/04.01.01_60/es_20187304v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.01.01_60/es_20187307v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.01.01_60/es_20187307v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.01.01_60/es_20187307v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187309/04.01.01_60/es_20187309v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187309/04.01.01_60/es_20187309v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187309/04.01.01_60/es_20187309v040101p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202785/01.05.01_60/es_202785v010501p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202785/01.05.01_60/es_202785v010501p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202785/01.05.01_60/es_202785v010501p.pdf
https://www.itu.int/rec/T-REC-X.680-200207-S
https://www.itu.int/rec/T-REC-X.680-200207-S
https://www.itu.int/rec/T-REC-X.681-200207-S
https://www.itu.int/rec/T-REC-X.681-200207-S
https://www.itu.int/rec/T-REC-X.682-200207-S
https://www.itu.int/rec/T-REC-X.682-200207-S
https://www.itu.int/rec/T-REC-X.683-200207-S
https://www.itu.int/rec/T-REC-X.683-200207-S
https://www.itu.int/rec/T-REC-X.690-200207-S
https://www.itu.int/rec/T-REC-X.690-200207-S
https://www.itu.int/rec/T-REC-X.690-200207-S
https://tools.ietf.org/html/rfc3629
https://gitlab.eclipse.org/eclipse/titan/titan.core/blob/master/usrguide/userguide/
https://gitlab.eclipse.org/eclipse/titan/titan.core/blob/master/usrguide/installationguide/
https://gitlab.eclipse.org/eclipse/titan/titan.core/blob/master/usrguide/releasenotes/
https://gitlab.eclipse.org/eclipse/titan/titan.core/blob/master/usrguide/apiguide/

136

[17] User Guide for the TITAN Designer for the Eclipse
[18] ETSI ES 201 373-1 V4.3.1 (2011-06)
[19] 1092-212 Uen (EN/LZB 101 01/1D) Product Changes

[20] ITU-T, X.696, Information Technology ASN.1 encoding rules: Specification of Octet Encoding
Rules (OER) International Telecommunication Union, August 2015

[21] ETSI ES 202 781 V1.4.1. (2015-06 Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; TTCN-3 Language Extensions: Configuration and
Deployment Support)

[22] RFC7049: Concise Binary Object Representation (CBOR) (October 2013)
[23] BSON specification version 1.1
[24] MongoDB Extended JSON document

[25] Methods for Testing and Specification (MTS); The Testing and Test Control Notation version
3. Part 11: Using JSON with TTCN-3 European Telecommunications Standards Institute. ES 201
873-11 Version 4.7.1, June 2017

[26] ETSI ES 202 782 V1.3.1. (2015-06 Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and
Real Time Testing)

[27] Programmers' Technical Reference Guide for the TITAN TTCN-3 Toolset

https://gitlab.eclipse.org/eclipse/titan/titan.EclipsePlug-ins/tree/master/org.eclipse.titan.designer/docs/Eclipse_Designer_userguide/
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.03.01_60/es_20187301v040301p.pdf
http://gask2web.ericsson.se/service/get?DocNo=1092-212&Lang=EN&Rev=N&Format=PDFV1R2
https://www.itu.int/rec/T-REC-X.696-201508-I
https://www.itu.int/rec/T-REC-X.696-201508-I
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://tools.ietf.org/html/rfc7049
http://bsonspec.org/spec.html
https://docs.mongodb.com/manual/reference/mongodb-extended-json/#bson-data-types-and-associated-representations
https://www.etsi.org/deliver/etsi_es/201800_201899/20187311/04.07.01_60/es_20187311v040701p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187311/04.07.01_60/es_20187311v040701p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187311/04.07.01_60/es_20187311v040701p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202782/01.03.01_60/es_202782v010301p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202782/01.03.01_60/es_202782v010301p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202782/01.03.01_60/es_202782v010301p.pdf
https://gitlab.eclipse.org/eclipse/titan/titan.core/blob/master/usrguide/referenceguide/

Chapter 15. Abbreviations

API

Application Programming Interface

ASCII

American Standard Code for Information Interchange

ASN.1
Abstract Syntax Notation One

ATS
Abstract Test Suite

BER
Basic Encoding Rules (of ASN.1)

BNF

Backus-Naur Formalism

CER
Canonical Encoding Rules (of ASN.1)

CPP
Cello Packet Platform

CR
Change Request

DER
Distinguished Encoding Rules (of ASN.1)

DNS

Domain Name Server

DTD

Document Type Description

ETS

Executable Test Suite

ETSI

European Telecommunications Standards Institute

FIFO
First In, First Out

137

GCC
GNU Compiler Collection

GUI

Graphical User Interface

HC

Host Controller

HTML
Hypertext Markup Language

HTTP

HyperText Transfer Protocol

IDL

Interface Description Language

IE

Information Element

IP

Internet Protocol

ISO

International Organization for Standardization

JSON
JavaScript Object Notation

LCOoV

A graphical front-end for GCC’s coverage testing tool

LSB
Least Significant Bit

MC

Main Controller

MSB
Most Significant Bit

MTC

Main (or Master) Test Component

OSE

Open System Environment

138

PDU

Protocol Data Unit

pl
Patch Level

PTC

Parallel Test Component

PT
Port Type

SOAP

Simple Object Access Protocol

SUT
System Under Test

TC
Test Component (either MTC or PTC)

TCC

Test Competence Center

TCP

Transmission Control Protocol

TLV
Tag, length, value

TPD

Titan Project Descriptor

TR
Trouble Report

TTCN

Testing and Test Control Notation

TTCN-2

Tree and Tabular Combined Notation version 2

TTCN-3

Tree and Tabular Combined Notation version 3 (formerly)Testing and Test Control Notation
(new resolution)

UDP

User Datagram Protocol

139

URL

Universal Resource Locator

URI

Uniform Resource Identifier

W3C
World Wide Web Consortium

XML
W3C Extensible Markup Language

XSD
W3C XML Schema Definition

140

	Programmers' Technical Reference Guide for the Java side of the TITAN TTCN-3 Toolset
	Table of Contents
	Chapter 1. About the Document
	1.1. Purpose
	1.2. Target Groups
	1.3. Naming Convention
	1.4. Typographical Conventions

	Chapter 2. TTCN-3 Limitations in this Version
	Chapter 3. TTCN–3 Language Extensions
	3.1. TTCN–3 Preprocessing
	3.2. Implicit Message Encoding
	3.3. RAW Encoder and Decoder
	3.4. TEXT Encoder and Decoder
	3.5. XML Encoder and Decoder
	3.6. JSON Encoder and Decoder
	3.7. OER Encoder and Decoder
	3.8. Build Consistency Checks
	3.9. Negative Testing
	3.10. Differences between the Java side runtime, the C side Load Test Runtime and the C side Function Test Runtime
	3.11. Profiling and code coverage

	Chapter 4. Supported ASN.1 Constructs and Limitations
	Chapter 5. Compiling TTCN–3 and ASN.1 Modules
	5.1. Build Options
	5.2. Makefile Generator
	5.3. The Compilation Process for TTCN–3 and ASN.1 Modules
	5.4. Particularities of ASN.1 Modules
	5.5. Using Component Relation Constraints from TTCN–3

	Chapter 6. The Run-time Configuration File
	Chapter 7. Code Coverage of TTCN-3 Modules
	Chapter 8. The TTCN-3 Debugger
	Chapter 9. Test Ports
	9.1. Generating the Skeleton
	9.2. Message-based Example
	9.3. Procedure-based Example
	9.4. Test Port Functions
	9.5. Support of address Type
	9.6. Provider Port Types
	9.7. Tips and Tricks
	9.8. Setting timestamps

	Chapter 10. Logger Plug-ins
	Chapter 11. Encoding and Decoding
	11.1. The Common API
	11.2. BER
	11.3. RAW
	11.4. TEXT
	11.5. XML Encoding (XER)
	11.6. JSON
	11.7. OER

	Chapter 12. Mapping TTCN–3 Data Types to Java Constructs
	12.1. Mapping of Names and Identifiers
	12.2. Modules
	12.3. Predefined TTCN–3 Data Types
	12.4. Compound Data Types
	12.5. Predefined Functions
	12.6. Using the Signature Classes

	Chapter 13. Tips & Troubleshooting
	13.1. Type Aliasing
	13.2. Using External Java Functions in TTCN–3 Test Suites
	13.3. Logging in Test Ports or External Functions
	13.4. Reusing Logged Values or Templates in TTCN–3 Code
	13.5. Using the TTCN-3 Preprocessing Functionality
	13.6. Error Recovery during Test Execution

	Chapter 14. References
	Chapter 15. Abbreviations

