
PerlTEX:

Defining LATEX macros in terms of Perl code∗

Scott Pakin
scott+pt@pakin.org

December 3, 2024

Abstract

PerlTEX is a combination Perl script (perltex.pl) and LATEX2ε style
file (perltex.sty) that, together, give the user the ability to define LATEX
macros in terms of Perl code. Once defined, a Perl macro becomes indistin-
guishable from any other LATEX macro. PerlTEX thereby combines LATEX’s
typesetting power with Perl’s programmability.

1 Introduction

TEX is a professional-quality typesetting system. However, its programming lan-
guage is rather hard to use for anything but the most simple forms of text sub-
stitution. Even LATEX, the most popular macro package for TEX, does little to
simplify TEX programming.

Perl is a general-purpose programming language whose forte is in text manip-
ulation. However, it has no support whatsoever for typesetting.

PerlTEX’s goal is to bridge these two worlds. It enables the construction of doc-
uments that are primarily LATEX-based but contain a modicum of Perl. PerlTEX
seamlessly integrates Perl code into a LATEX document, enabling the user to define
macros whose bodies consist of Perl code instead of TEX and LATEX code.

As an example, suppose you need to define a macro that reverses a set of words.
Although it sounds like it should be simple, few LATEX authors are sufficiently
versed in the TEX language to be able to express such a macro. However, a word-
reversal function is easy to express in Perl: one need only split a string into a
list of words, reverse the list, and join it back together. The following is how a
\reversewords macro could be defined using PerlTEX:

\perlnewcommand{\reversewords}[1]{join " ", reverse split " ", $_[0]}

Then, executing “\reversewords{Try doing this without Perl!}” in a docu-
ment would produce the text “Perl! without this doing Try”. Simple, isn’t it?

As another example, think about how you’d write a macro in LATEX to extract
a substring of a given string when provided with a starting position and a length.

∗This document corresponds to PerlTEX v2.3, dated 2024/12/03.

1

Perl has an built-in substr function and PerlTEX makes it easy to export this to
LATEX:

\perlnewcommand{\substr}[3]{substr $_[0], $_[1], $_[2]}

\substr can then be used just like any other LATEX macro—and as simply as
Perl’s substr function:

\newcommand{\str}{superlative}

A sample substring of ‘‘\str’’ is ‘‘\substr{\str}{2}{4}’’.

⇓
A sample substring of “superlative” is “perl”.

To present a somewhat more complex example, observe how much easier it is
to generate a repetitive matrix using Perl code than ordinary LATEX commands:

\perlnewcommand{\hilbertmatrix}[1]{

my $result = ’

\[

\renewcommand{\arraystretch}{1.3}

’;

$result .= ’\begin{array}{’ . ’c’ x $_[0] . "}\n";

foreach $j (0 .. $_[0]-1) {

my @row;

foreach $i (0 .. $_[0]-1) {

push @row, ($i+$j) ? (sprintf ’\frac{1}{%d}’, $i+$j+1) : ’1’;

}

$result .= join (’ & ’, @row) . " \\\\\n";

}

$result .= ’\end{array}

\]’;

return $result;

}

\hilbertmatrix{20}

⇓

2

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
25

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
25

1
26

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
25

1
26

1
27

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

In addition to \perlnewcommand and \perlrenewcommand, PerlTEX supports
\perlnewenvironment and \perlrenewenvironment macros. These enable envi-
ronments to be defined using Perl code. The following example, a spreadsheet

environment, generates a tabular environment plus a predefined header row. This
example would have been much more difficult to implement without PerlTEX:

\newcounter{ssrow}

\perlnewenvironment{spreadsheet}[1]{

my $cols = $_[0];

my $header = "A";

my $tabular = "\\setcounter{ssrow}{1}\n";

$tabular .= ’\newcommand*{\rownum}{\thessrow\addtocounter{ssrow}{1}}’ . "\n";

$tabular .= ’\begin{tabular}{@{}r|*{’ . $cols . ’}{r}@{}}’ . "\n";

$tabular .= ’\\multicolumn{1}{@{}c}{} &’ . "\n";

foreach (1 .. $cols) {

$tabular .= "\\multicolumn{1}{c";

$tabular .= ’@{}’ if $_ == $cols;

$tabular .= "}{" . $header++ . "}";

if ($_ == $cols) {

$tabular .= " \\\\ \\cline{2-" . ($cols+1) . "}"

}

else {

$tabular .= " &";

}

$tabular .= "\n";

}

return $tabular;

}{

return "\\end{tabular}\n";

3

}

\begin{center}

\begin{spreadsheet}{4}

\rownum & 1 & 8 & 10 & 15 \\

\rownum & 12 & 13 & 3 & 6 \\

\rownum & 7 & 2 & 16 & 9 \\

\rownum & 14 & 11 & 5 & 4

\end{spreadsheet}

\end{center}

⇓
A B C D

1 1 8 10 15
2 12 13 3 6
3 7 2 16 9
4 14 11 5 4

2 Usage

There are two components to using PerlTEX. First, documents must
include a “\usepackage{perltex}” line in their preamble in order to
define \perlnewcommand, \perlrenewcommand, \perlnewenvironment, and
\perlrenewenvironment. Second, LATEX documents must be compiled using the
perltex.pl wrapper script.

2.1 Defining and redefining Perl macros

perltex.sty defines five macros: \perlnewcommand, \perlrenewcommand,\perlnewcommand

\perlrenewcommand

\perlnewenvironment

\perlrenewenvironment

\perldo

\perlnewenvironment, \perlrenewenvironment, and \perldo. The first
four of these behave exactly like their LATEX2ε counterparts—\newcommand,
\renewcommand, \newenvironment, and \renewenvironment—except that
the macro body consists of Perl code that dynamically generates LATEX
code. perltex.sty even includes support for optional arguments and the
starred forms of its commands (i.e. \perlnewcommand*, \perlrenewcommand*,
\perlnewenvironment*, and \perlrenewenvironment*). \perldo immediately
executes a block of Perl code without (re)defining any macros or environments.

A PerlTEX-defined macro or environments is converted to a Perl subroutine
named after the macro/environment but beginning with “latex_”. For exam-
ple, a PerlTEX-defined LATEX macro called \myMacro internally produces a Perl
subroutine called latex_myMacro. Macro arguments are converted to subroutine
arguments. A LATEX macro’s #1 argument is referred to as $_[0] in Perl; #2 is
referred to as $_[1]; and so forth.

Any valid Perl code can be used in the body of a macro. However, PerlTEX
executes the Perl code within a secure sandbox. This means that potentially
harmful Perl operations, such as unlink, rmdir, and system will result in a run-
time error. (It is possible to disable the safety checks, however, as is explained
in Section 2.3.) Having a secure sandbox implies that it is safe to build PerlTEX

4

documents written by other people without worrying about what they may do to
your computer system.

A single sandbox is used for the entire latex run. This means that multiple
macros defined by \perlnewcommand can invoke each other. It also means that
global variables persist across macro calls:

\perlnewcommand{\setX}[1]{$x = $_[0]; return ""}

\perlnewcommand{\getX}{’x was set to ’ . $x . ’.’}

\setX{123}

\getX

\setX{456}

\getX

\perldo{$x = 789}

\getX

⇓
x was set to 123. x was set to 456. x was set to 789.

Macro arguments are expanded by LATEX before being passed to Perl.
Consider the following macro definition, which wraps its argument within
\begin{verbatim*}. . . \end{verbatim*}:

\perlnewcommand{\verbit}[1]{

"\\begin{verbatim*}\n$_[0]\n\\end{verbatim*}\n"

}

An invocation of “\verbit{\TeX}” would therefore typeset the expan-
sion of “\TeX”, namely “T\kern -.1667em\lower .5ex\hbox {E}\kern

-.125emX\spacefactor \@m”, which might be a bit unexpected. The solution
is to use \noexpand: \verbit{\noexpand\TeX} ⇒ \TeX. “Robust” macros as
well as \begin and \end are implicitly preceded by \noexpand.

2.2 Making perltex.pl optional

Normally, perltex.sty issues a Document must be compiled using perltex

error if a document specifies \usepackage{perltex} but is not compiled using
perltex.pl. However, sometimes PerlTEX may be needed merely to enhance a
document’s formatting without being mandatory for compiling the document. For
such cases, the optional package option instructs perltex.sty only to note thatoptional (env.)

Document was compiled without using the perltex script without abort-
ing the compilation. The author can then use the \ifperl macro to test if\ifperl

perltex.pl is being used and, if not, provide alternative definitions for macros
and environments defined with \perlnewcommand and \perlnewenvironment.

See Section 2.4 for a large PerlTEX example that uses optional and \ifperl

to define an environment one way if perltex.pl is detected and another way if
not. The text preceding the example also shows how to enable a document to
compile even if perltex.sty is not even installed.

5

2.3 Invoking perltex.pl

The following pages reproduce the perltex.pl program documentation. Key
parts of the documentation are excerpted when perltex.pl is invoked with the
--help option. The various Perl pod2⟨something⟩ tools can be used to generate the
complete program documentation in a variety of formats such as LATEX, HTML,
plain text, or Unix man-page format. For example, the following command is the
recommended way to produce a Unix man page from perltex.pl:

pod2man --center=" " --release=" " perltex.pl > perltex.1

6

NAME

perltex — enable LATEX macros to be defined in terms of Perl code

SYNOPSIS

perltex [–help] [–latex=program] [–[no]safe] [–permit=feature] [–makesty] [la-
tex options]

DESCRIPTION

LATEX—through the underlying TEX typesetting system—produces beautifully
typeset documents but has a macro language that is difficult to program. In
particular, support for complex string manipulation is largely lacking. Perl is a
popular general-purpose programming language whose forte is string manipula-
tion. However, it has no typesetting capabilities whatsoever.

Clearly, Perl’s programmability could complement LATEX’s typesetting strengths.
perltex is the tool that enables a symbiosis between the two systems. All a user
needs to do is compile a LATEX document using perltex instead of latex. (perltex
is actually a wrapper for latex, so no latex functionality is lost.) If the document
includes a \usepackage{perltex} in its preamble, then \perlnewcommand and
\perlrenewcommandmacros will be made available. These behave just like LATEX’s
\newcommand and \renewcommand except that the macro body contains Perl code
instead of LATEX code.

OPTIONS

perltex accepts the following command-line options:

--help

Display basic usage information.

--latex=program

Specify a program to use instead of latex. For example, --latex=pdflatex
would typeset the given document using pdflatex instead of ordinary latex.

--[no]safe

Enable or disable sandboxing. With the default of --safe, perltex executes
the code from a \perlnewcommand or \perlrenewcommand macro within a
protected environment that prohibits “unsafe” operations such as accessing
files or executing external programs. Specifying --nosafe gives the LATEX
document carte blanche to execute any arbitrary Perl code, including that
which can harm the user’s files. See Safe for more information.

--permit=feature

Permit particular Perl operations to be performed. The --permit option,
which can be specified more than once on the command line, enables finer-
grained control over the perltex sandbox. See Opcode for more information.

7

--makesty

Generate a LATEX style file called noperltex.sty. Replacing the document’s
\usepackage{perltex} line with \usepackage{noperltex} produces the
same output but does not require PerlTEX, making the document suitable
for distribution to people who do not have PerlTEX installed. The disadvan-
tage is that noperltex.sty is specific to the document that produced it. Any
changes to the document’s PerlTEX macro definitions or macro invocations
necessitates rerunning perltex with the --makesty option.

These options are then followed by whatever options are normally passed to latex
(or whatever program was specified with --latex), including, for instance, the
name of the .tex file to compile.

EXAMPLES

In its simplest form, perltex is run just like latex:

perltex myfile.tex

To use pdflatex instead of regular latex, use the --latex option:

perltex --latex=pdflatex myfile.tex

If LATEX gives a “trapped by operation mask” error and you trust the .tex file
you’re trying to compile not to execute malicious Perl code (e.g., because you
wrote it yourself), you can disable perltex’s safety mechansisms with --nosafe:

perltex --nosafe myfile.tex

The following command gives documents only perltex’s default permissions
(:browse) plus the ability to open files and invoke the time command:

perltex --permit=:browse --permit=:filesys_open

--permit=time myfile.tex

ENVIRONMENT

perltex honors the following environment variables:

PERLTEX

Specify the filename of the LATEX compiler. The LATEX compiler defaults to
“latex”. The PERLTEX environment variable overrides this default, and the
--latex command-line option (see OPTIONS) overrides that.

8

FILES

While compiling jobname.tex, perltex makes use of the following files:

jobname.lgpl

log file written by Perl; helpful for debugging Perl macros

jobname.topl

information sent from LATEX to Perl

jobname.frpl

information sent from Perl to LATEX

jobname.tfpl

“flag” file whose existence indicates that jobname.topl contains valid data

jobname.ffpl

“flag” file whose existence indicates that jobname.frpl contains valid data

jobname.dfpl

“flag” file whose existence indicates that jobname.ffpl has been deleted

noperltex-#.tex

file generated by noperltex.sty for each PerlTEX macro invocation

NOTES

perltex’s sandbox defaults to what Opcode calls “:browse”.

SEE ALSO

latex(1), pdflatex(1), perl(1), Safe(3pm), Opcode(3pm)

AUTHOR

Scott Pakin, scott+pt@pakin.org

9

2.4 A large, complete example

Suppose we want to define a linkwords environment that exhibits the following
characteristics:

1. All words that appear within the environment’s body are automatically hy-
perlinked to a given URL that incorporates the lowercase version of the word
somewhere within that URL.

2. The environment accepts an optional list of stop words that should not be
hyperlinked.

3. Paragraph breaks, nested environments, and other LATEXmarkup are allowed
within the environment’s body.

Because of the reliance on text manipulation (parsing the environment’s body
into words, comparing each word against the list of stop words, distinguishing
between text and LATEX markup, etc.), these requirements would be difficult to
meet without PerlTEX.

We use three packages to help define the linkwords environment: perltex for
text manipulation, hyperref for creating hyperlinks, and environ for gathering up
the body of an environment and passing it as an argument to a macro. Most of the
work is performed by the PerlTEX macro \dolinkwords, which takes three argu-
ments: a URL template that contains “\%s” as a placeholder for a word from the
text, a mandatory but possibly empty space-separated list of lowercase stop words,
and the input text to process. \dolinkwords first replaces all sequences of the
form \⟨letters⟩, \begin{⟨letters⟩}, or \end{⟨letters⟩} with dummy alphanumerics
but remembers which dummy sequence corresponds with each original LATEX se-
quence. The macro then iterates over each word in the input text, formatting each
non-stop-word using the URL template. Contractions (words containing apostro-
phes) are ignored. Finally, \dolinkwords replaces the dummy sequences with the
corresponding LATEX text and returns the result.

The linkwords environment itself is defined using the \NewEnviron macro
from the environ package. With \NewEnviron’s help, linkwords accumulates its
body into a \BODY macro and passes that plus the URL template and the optional
list of stop words to \dolinkwords.

As an added bonus, \ifperl. . . \else. . . \fi is used to surround the definition
of the \dolinkwords macro and linkwords environment. If the document is not
run through perltex.pl, linkwords is defined as a do-nothing environment that
simply typesets its body as is. Note that perltex.sty is loaded with the optional
option to indicate that the document can compile without perltex.pl. However,
the user still needs perltex.sty to avoid getting a File ‘perltex.sty’ not

found error from LATEX. To produce a document that can compile even without
perltex.sty installed, replace the \usepackage[optional]{perltex} line with
the following LATEX code:

\IfFileExists{perltex.sty}

{\usepackage[optional]{perltex}}

{\newif\ifperl}

A complete LATEX document is presented below. This document, which in-
cludes the definition and a use of the linkwords environment, can be extracted

10

from the PerlTEX source code into a file called example.tex by running

tex perltex.ins

In the following listing, line numbers are suffixed with “X” to distinguish them
from line numbers associated with PerlTEX’s source code.

1X \documentclass{article}

2X \usepackage[optional]{perltex}

3X \usepackage{environ}

4X \usepackage{hyperref}

5X

6X \ifperl

7X

8X \perlnewcommand{\dolinkwords}[3]{

9X # Preprocess our arguments.

10X $url = $_[0];

11X $url =~ s/\\\%s/\%s/g;

12X %stopwords = map {lc $_ => 1} split " ", $_[1];

13X $stopwords{""} = 1;

14X $text = $_[2];

15X

16X # Replace LaTeX code in the text with placeholders.

17X $placeholder = "ABCxyz123";

18X %substs = ();

19X $replace = sub {$substs{$placeholder} = $_[0]; $placeholder++};

20X $text =~ s/\\(begin|end)\s+\{[a-z]+\}/$replace->($&)/gse;

21X $text =~ s/\\[a-z]+/$replace->($&)/gse;

22X

23X # Hyperlink each word that’s not in the stop list.

24X $newtext = "";

25X foreach $word (split /((?<=[-\A\s])[\’a-z]+\b)/i, $text) {

26X $lcword = lc $word;

27X if (defined $stopwords{$lcword} || $lcword =~ /[^a-z]/) {

28X $newtext .= $word;

29X }

30X else {

31X $newtext .= sprintf "\\href{$url}{%s}", $lcword, $word;

32X }

33X }

34X

35X # Restore original text from placeholders and return the new text.

36X while (($tag, $orig) = each %substs) {

37X $newtext =~ s/\Q$tag\E/$orig/gs;

38X }

39X return $newtext;

40X }

41X

42X \NewEnviron{linkwords}[2][]{\dolinkwords{#2}{#1}{\BODY}}{}

43X

44X \else

45X

46X \newenvironment{linkwords}[2][]{}{}

11

47X

48X \fi

49X

50X \begin{document}

51X

52X \newcommand{\stopwords}{a an the of in am and or but i we me you us them}

53X

54X \begin{linkwords}[\stopwords]{http://www.google.com/search?q=define:\%s}

55X \begin{verse}

56X I’m very good at integral and differential calculus; \\

57X I know the scientific names of beings animalculous: \\

58X In short, in matters vegetable, animal, and mineral, \\

59X I am the very model of a modern Major-General.

60X \end{verse}

61X \end{linkwords}

62X

63X \end{document}

3 Implementation

Users interested only in using PerlTEX can skip Section 3, which presents the
complete PerlTEX source code. This section should be of interest primarily to
those who wish to extend PerlTEX or modify it to use a language other than Perl.

Section 3 is split into two main parts. Section 3.1 presents the source code
for perltex.sty, the LATEX side of PerlTEX, and Section 3.2 presents the source
code for perltex.pl, the Perl side of PerlTEX. In toto, PerlTEX consists of a
relatively small amount of code. perltex.sty is only 314 lines of LATEX and
perltex.pl is only 329 lines of Perl. perltex.pl is fairly straightforward Perl
code and shouldn’t be too difficult to understand by anyone comfortable with Perl
programming. perltex.sty, in contrast, contains a bit of LATEX trickery and
is probably impenetrable to anyone who hasn’t already tried his hand at LATEX
programming. Fortunately for the reader, the code is profusely commented so the
aspiring LATEX guru may yet learn something from it.

After documenting the perltex.sty and perltex.pl source code, a few sug-
gestions are provided for porting PerlTEX to use a backend language other than
Perl (Section 3.3).

3.1 perltex.sty

Although I’ve written a number of LATEX packages, perltex.sty was the most
challenging to date. The key things I needed to learn how to do include the
following:

1. storing brace-matched—but otherwise not valid LATEX—code for later use

2. iterating over a macro’s arguments

Storing non-LATEX code in a variable involves beginning a group in an argu-
mentless macro, fiddling with category codes, using \afterassignment to specify
a continuation function, and storing the subsequent brace-delimited tokens in the
input stream into a token register. The continuation function, which also takes

12

no arguments, ends the group begun in the first function and proceeds using the
correctly \catcoded token register. This technique appears in \plmac@haveargs

and \plmac@havecode and in a simpler form (i.e., without the need for storing
the argument) in \plmac@write@perl and \plmac@write@perl@i.

Iterating over a macro’s arguments is hindered by TEX’s requirement that “#”
be followed by a number or another “#”. The technique I discovered (which is used
by the Texinfo source code) is first to \let a variable be \relax, thereby making
it unexpandable, then to define a macro that uses that variable followed by a loop
variable, and finally to expand the loop variable and \let the \relaxed variable be
“#” right before invoking the macro. This technique appears in \plmac@havecode.

I hope you find reading the perltex.sty source code instructive. Writing it
certainly was.

3.1.1 Package initialization

\ifplmac@required

\plmac@requiredtrue

\plmac@requiredfalse

The optional package option lets an author specify that the document can be built
successfully even without PerlTEX. Typically, this means that the document uses
\ifperl to help define reduced-functionality equivalents of any document-defined
PerlTEX macros and environments. When optional is not specified, perltex.sty
issues an error message if the document is compiled without using perltex.pl.
When optional is specified, perltex.sty suppresses the error message.

64 \newif\ifplmac@required

65 \plmac@requiredtrue

66 \DeclareOption{optional}{\plmac@requiredfalse}

67 \ProcessOptions\relax

PerlTEX defines six macros that are used for communication between Perl
and LATEX. \plmac@tag is a string of characters that should never occur within
one of the user’s macro names, macro arguments, or macro bodies. perltex.pl

therefore defines \plmac@tag as a long string of random uppercase letters.
\plmac@tofile is the name of a file used for communication from LATEX to Perl.
\plmac@fromfile is the name of a file used for communication from Perl to LATEX.
\plmac@toflag signals that \plmac@tofile can be read safely. \plmac@fromflag
signals that \plmac@fromfile can be read safely. \plmac@doneflag signals that
\plmac@fromflag has been deleted. Table 1 lists all of these variables along with
the value assigned to each by perltex.pl.

Table 1: Variables used for communication between Perl and LATEX
Variable Purpose perltex.pl assignment
\plmac@tag \plmac@tofile field separator (20 random letters)
\plmac@tofile LATEX → Perl communication \jobname.topl

\plmac@fromfile Perl → LATEX communication \jobname.frpl

\plmac@toflag \plmac@tofile synchronization \jobname.tfpl

\plmac@fromflag \plmac@fromfile synchronization \jobname.ffpl

\plmac@doneflag \plmac@fromflag synchronization \jobname.dfpl

\ifperl

\perltrue

\perlfalse

The following block of code checks the existence of each of the variables listed
in Table 1 plus \plmac@pipe, a Unix named pipe used for to improve perfor-
mance. If any variable is not defined, perltex.sty gives an error message and—

13

as we shall see on page 25—defines dummy versions of \perl[re]newcommand and
\perl[re]newenvironment.

68 \newif\ifperl

69 \perltrue

70 \@ifundefined{plmac@tag}{\perlfalse\let\plmac@tag=\relax}{}

71 \@ifundefined{plmac@tofile}{\perlfalse}{}

72 \@ifundefined{plmac@fromfile}{\perlfalse}{}

73 \@ifundefined{plmac@toflag}{\perlfalse}{}

74 \@ifundefined{plmac@fromflag}{\perlfalse}{}

75 \@ifundefined{plmac@doneflag}{\perlfalse}{}

76 \@ifundefined{plmac@pipe}{\perlfalse}{}

77 \ifperl

78 \else

79 \ifplmac@required

80 \PackageError{perltex}{Document must be compiled using perltex}

81 {Instead of compiling your document directly with latex, you need

82 to\MessageBreak use the perltex script. \space perltex sets up

83 a variety of macros needed by\MessageBreak the perltex

84 package as well as a listener process needed for\MessageBreak

85 communication between LaTeX and Perl.}

86 \else

87 \bgroup

88 \obeyspaces

89 \typeout{perltex: Document was compiled without using the perltex script;}

90 \typeout{ it may not print as desired.}

91 \egroup

92 \fi

93 \fi

3.1.2 Defining Perl macros

PerlTEX defines five macros intended to be called by the author. Sec-
tion 3.1.2 details the implementation of two of them: \perlnewcommand and
\perlrenewcommand. (Section 3.1.3 details the implementation of the next two,
\perlnewenvironment and \perlrenewenvironment; and, Section 3.1.4 details
the implementation of the final macro, \perldo.) The goal is for these two macros
to behave exactly like \newcommand and \renewcommand, respectively, except that
the author macros they in turn define have Perl bodies instead of LATEX bodies.

The sequence of the operations defined in this section is as follows:

1. The user invokes \perl[re]newcommand, which stores \[re]newcommand
in \plmac@command. The \perl[re]newcommand macro then in-
vokes \plmac@newcommand@i with a first argument of “*” for
\perl[re]newcommand* or “!” for ordinary \perl[re]newcommand.

2. \plmac@newcommand@i defines \plmac@starchar as “*” if it was passed a
“*” or ⟨empty⟩ if it was passed a “!”. It then stores the name of the
user’s macro in \plmac@macname, a \writeable version of the name in
\plmac@cleaned@macname, and the macro’s previous definition (needed by
\perlrenewcommand) in \plmac@oldbody. Finally, \plmac@newcommand@i
invokes \plmac@newcommand@ii.

14

3. \plmac@newcommand@ii stores the number of arguments to the user’s
macro (which may be zero) in \plmac@numargs. It then invokes
\plmac@newcommand@iii@opt if the first argument is supposed to be op-
tional or \plmac@newcommand@iii@no@opt if all arguments are supposed to
be required.

4. \plmac@newcommand@iii@opt defines \plmac@defarg as the default value
of the optional argument. \plmac@newcommand@iii@no@opt defines it as
⟨empty⟩. Both functions then call \plmac@haveargs.

5. \plmac@haveargs stores the user’s macro body (written in Perl) verbatim
in \plmac@perlcode. \plmac@haveargs then invokes \plmac@havecode.

6. By the time \plmac@havecode is invoked all of the information needed to
define the user’s macro is available. Before defining a LATEX macro, how-
ever, \plmac@havecode invokes \plmac@write@perl to tell perltex.pl to
define a Perl subroutine with a name based on \plmac@cleaned@macname

and the code contained in \plmac@perlcode. Figure 1 illustrates the data
that \plmac@write@perl passes to perltex.pl.

DEF

\plmac@tag

\plmac@cleaned@macname

\plmac@tag

\plmac@perlcode

Figure 1: Data written to \plmac@tofile to define a Perl subroutine

7. \plmac@havecode invokes \newcommand or \renewcommand, as appropriate,
defining the user’s macro as a call to \plmac@write@perl. An invocation of
the user’s LATEX macro causes \plmac@write@perl to pass the information
shown in Figure 2 to perltex.pl.

USE

\plmac@tag

\plmac@cleaned@macname

\plmac@tag

#1

\plmac@tag

#2

\plmac@tag

#3
...

#⟨last⟩

Figure 2: Data written to \plmac@tofile to invoke a Perl subroutine

8. Whenever \plmac@write@perl is invoked it writes its argument ver-
batim to \plmac@tofile; perltex.pl evaluates the code and writes
\plmac@fromfile; finally, \plmac@write@perl \inputs \plmac@fromfile.

15

An example might help distinguish the myriad macros used internally by
perltex.sty. Consider the following call made by the user’s document:

\perlnewcommand*{\example}[3][frobozz]{join("---", @_)}

Table 2 shows how perltex.sty parses that command into its constituent com-
ponents and which components are bound to which perltex.sty macros.

Table 2: Macro assignments corresponding to an sample \perlnewcommand*
Macro Sample definition
\plmac@command \newcommand

\plmac@starchar *

\plmac@macname \example

\plmac@cleaned@macname \example (catcode 11)
\plmac@oldbody \relax (presumably)
\plmac@numargs 3

\plmac@defarg frobozz

\plmac@perlcode join("---", @_) (catcode 11)

\perlnewcommand

\perlrenewcommand

\plmac@command

\plmac@next

\perlnewcommand and \perlrenewcommand are the first two commands exported
to the user by perltex.sty. \perlnewcommand is analogous to \newcommand

except that the macro body consists of Perl code instead of LATEX code. Like-
wise, \perlrenewcommand is analogous to \renewcommand except that the macro
body consists of Perl code instead of LATEX code. \perlnewcommand and
\perlrenewcommand merely define \plmac@command and \plmac@next and invoke
\plmac@newcommand@i.

94 \def\perlnewcommand{%

95 \let\plmac@command=\newcommand

96 \let\plmac@next=\relax

97 \@ifnextchar*{\plmac@newcommand@i}{\plmac@newcommand@i!}%

98 }

99 \def\perlrenewcommand{%

100 \let\plmac@next=\relax

101 \let\plmac@command=\renewcommand

102 \@ifnextchar*{\plmac@newcommand@i}{\plmac@newcommand@i!}%

103 }

\plmac@newcommand@i

\plmac@starchar

\plmac@macname

\plmac@oldbody

\plmac@cleaned@macname

If the user invoked \perl[re]newcommand* then \plmac@newcommand@i is passed
a “*” and, in turn, defines \plmac@starchar as “*”. If the user in-
voked \perl[re]newcommand (no “*”) then \plmac@newcommand@i is passed
a “!” and, in turn, defines \plmac@starchar as ⟨empty⟩. In either case,
\plmac@newcommand@i defines \plmac@macname as the name of the user’s macro,
\plmac@cleaned@macname as a \writeable (i.e., category code 11) version of
\plmac@macname, and \plmac@oldbody and the previous definition of the user’s
macro. (\plmac@oldbody is needed by \perlrenewcommand.) It then invokes
\plmac@newcommand@ii.

104 \def\plmac@newcommand@i#1#2{%

105 \ifx#1*%

16

106 \def\plmac@starchar{*}%

107 \else

108 \def\plmac@starchar{}%

109 \fi

110 \def\plmac@macname{#2}%

111 \let\plmac@oldbody=#2\relax

112 \expandafter\def\expandafter\plmac@cleaned@macname\expandafter{%

113 \expandafter\string\plmac@macname}%

114 \@ifnextchar[{\plmac@newcommand@ii}{\plmac@newcommand@ii[0]}%]

115 }

\plmac@newcommand@ii

\plmac@numargs

\plmac@newcommand@i invokes \plmac@newcommand@ii with the number of ar-
guments to the user’s macro in brackets. \plmac@newcommand@ii stores that
number in \plmac@numargs and invokes \plmac@newcommand@iii@opt if the first
argument is to be optional or \plmac@newcommand@iii@no@opt if all arguments
are to be mandatory.

116 \def\plmac@newcommand@ii[#1]{%

117 \def\plmac@numargs{#1}%

118 \@ifnextchar[{\plmac@newcommand@iii@opt}

119 {\plmac@newcommand@iii@no@opt}%]

120 }

\plmac@newcommand@iii@opt

\plmac@newcommand@iii@no@opt

\plmac@defarg

Only one of these two macros is executed per invocation of \perl[re]newcommand,
depending on whether or not the first argument of the user’s macro is an op-
tional argument. \plmac@newcommand@iii@opt is invoked if the argument is
optional. It defines \plmac@defarg to the default value of the optional argu-
ment. \plmac@newcommand@iii@no@opt is invoked if all arguments are manda-
tory. It defines \plmac@defarg as \relax. Both \plmac@newcommand@iii@opt

and \plmac@newcommand@iii@no@opt then invoke \plmac@haveargs.

121 \def\plmac@newcommand@iii@opt[#1]{%

122 \def\plmac@defarg{#1}%

123 \plmac@haveargs

124 }

125 \def\plmac@newcommand@iii@no@opt{%

126 \let\plmac@defarg=\relax

127 \plmac@haveargs

128 }

\plmac@perlcode

\plmac@haveargs

Now things start to get tricky. We have all of the arguments we need to define the
user’s command so all that’s left is to grab the macro body. But there’s a catch:
Valid Perl code is unlikely to be valid LATEX code. We therefore have to read the
macro body in a \verb-like mode. Furthermore, we actually need to store the
macro body in a variable, as we don’t need it right away.

The approach we take in \plmac@haveargs is as follows. First, we give all
“special” characters category code 12 (“other”). We then indicate that the car-
riage return character (control-M) marks the end of a line and that curly braces
retain their normal meaning. With the aforementioned category-code definitions,
we now have to store the next curly-brace-delimited fragment of text, end the
current group to reset all category codes to their previous value, and continue
processing the user’s macro definition. How do we do that? The answer is to as-
sign the upcoming text fragment to a token register (\plmac@perlcode) while an
\afterassignment is in effect. The \afterassignment causes control to transfer

17

to \plmac@havecode right after \plmac@perlcode receives the macro body with
all of the “special” characters made impotent.

129 \newtoks\plmac@perlcode

130 \def\plmac@haveargs{%

131 \begingroup

132 \let\do\@makeother\dospecials

133 \catcode‘\^^M=\active

134 \newlinechar‘\^^M

135 \endlinechar=‘\^^M

136 \catcode‘\{=1

137 \catcode‘\}=2

138 \afterassignment\plmac@havecode

139 \global\plmac@perlcode

140 }

Control is transfered to \plmac@havecode from \plmac@haveargs right af-
ter the user’s macro body is assigned to \plmac@perlcode. We now have
everything we need to define the user’s macro. The goal is to define it as
“\plmac@write@perl{⟨contents of Figure 2⟩}”. This is easier said than done
because the number of arguments in the user’s macro is not known statically,
yet we need to iterate over however many arguments there are. Because of this
complexity, we will explain \plmac@perlcode piece-by-piece.

\plmac@sep Define a character to separate each of the items presented in Figures 1 and 2. Perl
will need to strip this off each argument. For convenience in porting to languages
with less powerful string manipulation than Perl’s, we define \plmac@sep as a
carriage-return character of category code 11 (“letter”).

141 {\catcode‘\^^M=11\gdef\plmac@sep{^^M}}

\plmac@argnum Define a loop variable that will iterate from 1 to the number of arguments in the
user’s function, i.e., \plmac@numargs.

142 \newcount\plmac@argnum

\plmac@havecode Now comes the final piece of what started as a call to \perl[re]newcommand. First,
to reset all category codes back to normal, \plmac@havecode ends the group that
was begun in \plmac@haveargs.

143 \def\plmac@havecode{%

144 \endgroup

\plmac@define@sub We invoke \plmac@write@perl to define a Perl subroutine named after
\plmac@cleaned@macname. \plmac@define@sub sends Perl the information
shown in Figure 1 on page 15.

145 \edef\plmac@define@sub{%

146 \noexpand\plmac@write@perl{DEF\plmac@sep

147 \plmac@tag\plmac@sep

148 \plmac@cleaned@macname\plmac@sep

149 \plmac@tag\plmac@sep

150 \the\plmac@perlcode

151 }%

152 }%

153 \plmac@define@sub

18

\plmac@body The rest of \plmac@havecode is preparation for defining the user’s macro.
(LATEX2ε’s \newcommand or \renewcommand will do the actual work, though.)
\plmac@body will eventually contain the complete (LATEX) body of the user’s
macro. Here, we initialize it to the first three items listed in Figure 2 on page 15
(with intervening \plmac@seps).

154 \edef\plmac@body{%

155 USE\plmac@sep

156 \plmac@tag\plmac@sep

157 \plmac@cleaned@macname

158 }%

\plmac@hash Now, for each argument #1, #2, . . . , #\plmac@numargs we append a \plmac@tag

plus the argument to \plmac@body (as always, with a \plmac@sep after each
item). This requires more trickery, as TEX requires a macro-parameter char-
acter (“#”) to be followed by a literal number, not a variable. The approach
we take, which I first discovered in the Texinfo source code (although it’s
used by LATEX and probably other TEX-based systems as well), is to \let-bind
\plmac@hash to \relax. This makes \plmac@hash unexpandable, and because
it’s not a “#”, TEX doesn’t complain. After \plmac@body has been extended
to include \plmac@hash1, \plmac@hash2, . . . , \plmac@hash\plmac@numargs, we
then \let-bind \plmac@hash to ##, which TEX lets us do because we’re within a
macro definition (\plmac@havecode). \plmac@body will then contain #1, #2, . . . ,
#\plmac@numargs, as desired.

159 \let\plmac@hash=\relax

160 \plmac@argnum=\@ne

161 \loop

162 \ifnum\plmac@numargs<\plmac@argnum

163 \else

164 \edef\plmac@body{%

165 \plmac@body\plmac@sep\plmac@tag\plmac@sep

166 \plmac@hash\plmac@hash\number\plmac@argnum}%

167 \advance\plmac@argnum by \@ne

168 \repeat

169 \let\plmac@hash=##%

\plmac@define@command We’re ready to execute a \[re]newcommand. Because we need to expand
many of our variables, we \edef \plmac@define@command to the appropriate
\[re]newcommand call, which we will soon execute. The user’s macro must first
be \let-bound to \relax to prevent it from expanding. Then, we handle two
cases: either all arguments are mandatory (and \plmac@defarg is \relax) or the
user’s macro has an optional argument (with default value \plmac@defarg).

170 \expandafter\let\plmac@macname=\relax

171 \ifx\plmac@defarg\relax

172 \edef\plmac@define@command{%

173 \noexpand\plmac@command\plmac@starchar{\plmac@macname}%

174 [\plmac@numargs]{%

175 \noexpand\plmac@write@perl{\plmac@body}%

176 }%

177 }%

178 \else

179 \edef\plmac@define@command{%

180 \noexpand\plmac@command\plmac@starchar{\plmac@macname}%

19

181 [\plmac@numargs][\plmac@defarg]{%

182 \noexpand\plmac@write@perl{\plmac@body}%

183 }%

184 }%

185 \fi

The final steps are to restore the previous definition of the user’s macro—we
had set it to \relax above to make the name unexpandable—then redefine it
by invoking \plmac@define@command. Why do we need to restore the previous
definition if we’re just going to redefine it? Because \newcommand needs to produce
an error if the macro was previously defined and \renewcommand needs to produce
an error if the macro was not previously defined.

\plmac@havecode concludes by invoking \plmac@next, which is a no-op for
\perlnewcommand and \perlrenewcommand but processes the end-environment
code for \perlnewenvironment and \perlrenewenvironment.

186 \expandafter\let\plmac@macname=\plmac@oldbody

187 \plmac@define@command

188 \plmac@next

189 }

3.1.3 Defining Perl environments

Section 3.1.2 detailed the implementation of \perlnewcommand and
\perlrenewcommand. Section 3.1.3 does likewise for \perlnewenvironment

and \perlrenewenvironment, which are the Perl-bodied analogues of
\newenvironment and \renewenvironment. This section is significantly shorter
than the previous because \perlnewenvironment and \perlrenewenvironment

are largely built atop the macros already defined in Section 3.1.2.

\perlnewenvironment

\perlrenewenvironment

\plmac@command

\plmac@next

\perlnewenvironment and \perlrenewenvironment are the remaining two com-
mands exported to the user by perltex.sty. \perlnewenvironment is anal-
ogous to \newenvironment except that the macro body consists of Perl code
instead of LATEX code. Likewise, \perlrenewenvironment is analogous to
\renewenvironment except that the macro body consists of Perl code instead of
LATEX code. \perlnewenvironment and \perlrenewenvironment merely define
\plmac@command and \plmac@next and invoke \plmac@newenvironment@i.

The significance of \plmac@next (which was let-bound to \relax for
\perl[re]newcommand but is let-bound to \plmac@end@environment here) is that
a LATEX environment definition is really two macro definitions: \⟨name⟩ and
\end⟨name⟩. Because we want to reuse as much code as possible the idea is to
define the “begin” code as one macro, then inject—by way of plmac@next—a call
to \plmac@end@environment, which defines the “end” code as a second macro.

190 \def\perlnewenvironment{%

191 \let\plmac@command=\newcommand

192 \let\plmac@next=\plmac@end@environment

193 \@ifnextchar*{\plmac@newenvironment@i}{\plmac@newenvironment@i!}%

194 }

195 \def\perlrenewenvironment{%

196 \let\plmac@command=\renewcommand

197 \let\plmac@next=\plmac@end@environment

198 \@ifnextchar*{\plmac@newenvironment@i}{\plmac@newenvironment@i!}%

199 }

20

\plmac@newenvironment@i

\plmac@starchar

\plmac@envname

\plmac@macname

\plmac@oldbody

\plmac@cleaned@macname

The \plmac@newenvironment@i macro is analogous to \plmac@newcommand@i;
see the description of \plmac@newcommand@i on page 16 to understand the ba-
sic structure. The primary difference is that the environment name (#2) is just
text, not a control sequence. We store this text in \plmac@envname to facilitate
generating the names of the two macros that constitute an environment defini-
tion. Note that there is no \plmac@newenvironment@ii; control passes instead to
\plmac@newcommand@ii.

200 \def\plmac@newenvironment@i#1#2{%

201 \ifx#1*%

202 \def\plmac@starchar{*}%

203 \else

204 \def\plmac@starchar{}%

205 \fi

206 \def\plmac@envname{#2}%

207 \expandafter\def\expandafter\plmac@macname\expandafter{\csname#2\endcsname}%

208 \expandafter\let\expandafter\plmac@oldbody\plmac@macname\relax

209 \expandafter\def\expandafter\plmac@cleaned@macname\expandafter{%

210 \expandafter\string\plmac@macname}%

211 \@ifnextchar[{\plmac@newcommand@ii}{\plmac@newcommand@ii[0]}%]

212 }

\plmac@end@environment

\plmac@next

\plmac@macname

\plmac@oldbody

\plmac@cleaned@macname

Recall that an environment definition is a shortcut for two macro definitions:
\⟨name⟩ and \end⟨name⟩ (where ⟨name⟩ was stored in \plmac@envname by
\plmac@newenvironment@i). After defining \⟨name⟩, \plmac@havecode trans-
fers control to \plmac@end@environment because \plmac@next was let-bound to
\plmac@end@environment in \perl[re]newenvironment.

\plmac@end@environment’s purpose is to define \end⟨name⟩. This is a little
tricky, however, because LATEX’s \[re]newcommand refuses to (re)define a macro
whose name begins with “end”. The solution that \plmac@end@environment

takes is first to define a \plmac@end@macro macro then (in plmac@next) let-bind
\end⟨name⟩ to it. Other than that, \plmac@end@environment is a combined
and simplified version of \perlnewenvironment, \perlrenewenvironment, and
\plmac@newenvironment@i.

213 \def\plmac@end@environment{%

214 \expandafter\def\expandafter\plmac@next\expandafter{\expandafter

215 \let\csname end\plmac@envname\endcsname=\plmac@end@macro

216 \let\plmac@next=\relax

217 }%

218 \def\plmac@macname{\plmac@end@macro}%

219 \expandafter\let\expandafter\plmac@oldbody\csname end\plmac@envname\endcsname

220 \expandafter\def\expandafter\plmac@cleaned@macname\expandafter{%

221 \expandafter\string\plmac@macname}%

222 \@ifnextchar[{\plmac@newcommand@ii}{\plmac@newcommand@ii[0]}%]

223 }

3.1.4 Executing top-level Perl code

The macros defined in Sections 3.1.2 and 3.1.3 enable an author to inject subrou-
tines into the Perl sandbox. The final PerlTEX macro, \perldo, instructs the Perl
sandbox to execute a block of code outside of all subroutines. \perldo’s imple-
mentation is much simpler than that of the other author macros because \perldo

21

does not have to process subroutine arguments. Figure 3 illustrates the data that
gets written to plmac@tofile (indirectly) by \perldo.

RUN

\plmac@tag

Ignored
\plmac@tag

\plmac@perlcode

Figure 3: Data written to \plmac@tofile to execute Perl code

\perldo Execute a block of Perl code and pass the result to LATEX for further processing.
This code is nearly identical to that of Section 3.1.2’s \plmac@haveargs but ends
by invoking \plmac@have@run@code instead of \plmac@havecode.

224 \def\perldo{%

225 \begingroup

226 \let\do\@makeother\dospecials

227 \catcode‘\^^M=\active

228 \newlinechar‘\^^M

229 \endlinechar=‘\^^M

230 \catcode‘\{=1

231 \catcode‘\}=2

232 \afterassignment\plmac@have@run@code

233 \global\plmac@perlcode

234 }

\plmac@have@run@code

\plmac@run@code

Pass a block of code to Perl to execute. \plmac@have@run@code is identical to
\plmac@havecode but specifies the RUN tag instead of the DEF tag.

235 \def\plmac@have@run@code{%

236 \endgroup

237 \edef\plmac@run@code{%

238 \noexpand\plmac@write@perl{RUN\plmac@sep

239 \plmac@tag\plmac@sep

240 N/A\plmac@sep

241 \plmac@tag\plmac@sep

242 \the\plmac@perlcode

243 }%

244 }%

245 \plmac@run@code

246 }

3.1.5 Communication between LATEX and Perl

As shown in the previous section, when a document invokes \perl[re]newcommand
to define a macro, perltex.sty defines the macro in terms of a call to
\plmac@write@perl. In this section, we learn how \plmac@write@perl operates.

At the highest level, LATEX-to-Perl communication is performed via the filesys-
tem. In essence, LATEX writes a file (\plmac@tofile) corresponding to the in-
formation in either Figure 1 or Figure 2; Perl reads the file, executes the code
within it, and writes a .tex file (\plmac@fromfile); and, finally, LATEX reads and
executes the new .tex file. However, the actual communication protocol is a bit

22

more involved than that. The problem is that Perl needs to know when LATEX has
finished writing Perl code and LATEX needs to know when Perl has finished writing
LATEX code. The solution involves introducing three extra files—\plmac@toflag,
\plmac@fromflag, and \plmac@doneflag—which are used exclusively for LATEX-
to-Perl synchronization.

There’s a catch: Although Perl can create and delete files, LATEX can only
create them. Even worse, LATEX (more specifically, teTEX, which is the TEX
distribution under which I developed PerlTEX) cannot reliably poll for a file’s
nonexistence; if a file is deleted in the middle of an \immediate\openin, latex
aborts with an error message. These restrictions led to the regrettably convoluted
protocol illustrated in Figure 4. In the figure, “Touch” means “create a zero-
length file”; “Await” means “wait until the file exists”; and, “Read”, “Write”,
and “Delete” are defined as expected. Assuming the filesystem performs these
operations in a sequentially consistent order (not necessarily guaranteed on all
filesystems, unfortunately), PerlTEX should behave as expected.

Time LATEX Perl

?

Write \plmac@tofile

Touch \plmac@toflag → Await \plmac@toflag

Read \plmac@tofile

Write \plmac@fromfile

Delete \plmac@toflag
Delete \plmac@tofile
Delete \plmac@doneflag

Await \plmac@fromflag ← Touch \plmac@fromflag

Touch \plmac@tofile → Await \plmac@tofile

Delete \plmac@fromflag
Await \plmac@doneflag ← Touch \plmac@doneflag

Read \plmac@fromfile

Figure 4: LATEX-to-Perl communication protocol

Although Figure 4 shows the read of \plmac@fromfile as the final step of
the protocol, the file’s contents are in fact valid as soon as LATEX detects that
\plmac@fromflag exists. Deferring the read to the end, however, enables PerlTEX
to support recursive macro invocations.

\plmac@infile

\plmac@IfFileExists

The Await operations in Figure 4 require testing if a file exists. On the
LATEX side, this normally would be achieved using LATEX’s \IfFileExists

macro, and this is indeed what PerlTEX did until version 2.2. However, the
1-Jun-2023 release of LATEX3 introduced a performance optimization that lets
\IfFileExists cache prior results. (See https://www.latex-project.org/

news/latex2e-news/ltnews37.pdf.) In other words, once \IfFileExists de-
termines that a file exists, it will follow the true branch on all subsequent calls
without ever re-checking if the file still exists. This semantics breaks the protocol
described in Figure 4 by enabling Await to return before the file being waited for
actually exists.

To work around LATEX3’s new behavior, we define our own ver-
sion of \IfFileExists called \plmac@IfFileExists, which is derived from
\IfFileExists’s simpler, more straightforward LATEX2ε implementation. In par-

23

https://www.latex-project.org/news/latex2e-news/ltnews37.pdf
https://www.latex-project.org/news/latex2e-news/ltnews37.pdf

ticular, file existence is checked explicitly on each invocation.

247 \newread\plmac@infile

248 \newcommand{\plmac@IfFileExists}[3]{%

249 \openin\plmac@infile=#1 %

250 \ifeof\plmac@infile

251 \def\plmac@next{#3}%

252 \else

253 \closein\plmac@infile

254 \def\plmac@next{#2}%

255 \fi

256 \plmac@next

257 }

\plmac@await@existence

\ifplmac@file@exists

\plmac@file@existstrue

\plmac@file@existsfalse

The purpose of the \plmac@await@existence macro is repeatedly to check the
existence of a given file until the file actually exists. We use \plmac@IfFileExists
(defined above) to check if the file exists and accordingly either continue or exit
the loop.

As a performance optimization we \input a named pipe. This causes the
latex process to relinquish the CPU until the perltex process writes data (always
just a comment plus “\endinput”) into the named pipe. On systems that don’t
support persistent named pipes (e.g., Microsoft Windows), \plmac@pipe is an
ordinary file containing only a comment plus “\endinput”. While reading that
file is not guaranteed to relinquish the CPU, it should not hurt the performance
or correctness of the communication protocol between LATEX and Perl.

258 \newif\ifplmac@file@exists

259 \newcommand{\plmac@await@existence}[1]{%

260 \begin{lrbox}{\@tempboxa}%

261 \input\plmac@pipe

262 \end{lrbox}%

263 \loop

264 \plmac@IfFileExists{#1}%

265 {\plmac@file@existstrue}%

266 {\plmac@file@existsfalse}%

267 \ifplmac@file@exists

268 \else

269 \repeat

270 }

\plmac@outfile We define a file handle for \plmac@write@perl@i to use to create and write
\plmac@tofile and \plmac@toflag.

271 \newwrite\plmac@outfile

\plmac@write@perl \plmac@write@perl begins the LATEX-to-Perl data exchange, following the pro-
tocol illustrated in Figure 4. \plmac@write@perl prepares for the next piece of
text in the input stream to be read with “special” characters marked as category
code 12 (“other”). This prevents LATEX from complaining if the Perl code contains
invalid LATEX (which it usually will). \plmac@write@perl ends by passing control
to \plmac@write@perl@i, which performs the bulk of the work.

272 \newcommand{\plmac@write@perl}{%

273 \begingroup

274 \let\do\@makeother\dospecials

24

275 \catcode‘\^^M=\active

276 \newlinechar‘\^^M

277 \endlinechar=‘\^^M

278 \catcode‘\{=1

279 \catcode‘\}=2

280 \plmac@write@perl@i

281 }

\plmac@write@perl@i When \plmac@write@perl@i begins executing, the category codes are set up so
that the macro’s argument will be evaluated “verbatim” except for the part con-
sisting of the LATEX code passed in by the author, which is partially expanded.
Thus, everything is in place for \plmac@write@perl@i to send its argument to
Perl and read back the (LATEX) result.

Because all of perltex.sty’s protocol processing is encapsulated within
\plmac@write@perl@i, this is the only macro that strictly requires perltex.pl.
Consequently, we wrap the entire macro definition within a check for perltex.pl.

282 \ifperl

283 \newcommand{\plmac@write@perl@i}[1]{%

The first step is to write argument #1 to \plmac@tofile:

284 \immediate\openout\plmac@outfile=\plmac@tofile\relax

285 \let\protect=\noexpand

286 \def\begin{\noexpand\begin}%

287 \def\end{\noexpand\end}%

288 \immediate\write\plmac@outfile{#1}%

289 \immediate\closeout\plmac@outfile

(In the future, it might be worth redefining \def, \edef, \gdef, \xdef, \let, and
maybe some other control sequences as “\noexpand⟨control sequence⟩\noexpand”
so that \write doesn’t try to expand an undefined control sequence.)

We’re now finished using #1 so we can end the group begun by
\plmac@write@perl, thereby resetting each character’s category code back to its
previous value.

290 \endgroup

Continuing the protocol illustrated in Figure 4, we create a zero-byte
\plmac@toflag in order to notify perltex.pl that it’s now safe to read
\plmac@tofile.

291 \immediate\openout\plmac@outfile=\plmac@toflag\relax

292 \immediate\closeout\plmac@outfile

To avoid reading \plmac@fromfile before perltex.pl has finished writing it
we must wait until perltex.pl creates \plmac@fromflag, which it does only after
it has written \plmac@fromfile.

293 \plmac@await@existence\plmac@fromflag

At this point, \plmac@fromfile should contain valid LATEX code. However, we
defer inputting it until we the very end. Doing so enables recursive and mutually
recursive invocations of PerlTEX macros.

Because TEX can’t delete files we require an additional LATEX-to-Perl synchro-
nization step. For convenience, we recycle \plmac@tofile as a synchronization
file rather than introduce yet another flag file to complement \plmac@toflag,
\plmac@fromflag, and \plmac@doneflag.

25

294 \immediate\openout\plmac@outfile=\plmac@tofile\relax

295 \immediate\closeout\plmac@outfile

296 \plmac@await@existence\plmac@doneflag

The only thing left to do is to \input and evaluate \plmac@fromfile, which
contains the LATEX output from the Perl subroutine.

297 \input\plmac@fromfile\relax

298 }

\plmac@write@perl@i The foregoing code represents the “real” definition of \plmac@write@perl@i. For
the user’s convenience, we define a dummy version of \plmac@write@perl@i so
that a document which utilizes perltex.sty can still compile even if not built
using perltex.pl. All calls to macros defined with \perl[re]newcommand and all
invocations of environments defined with \perl[re]newenvironment are replaced

with “ PerlTEX ”. A minor complication is that text can’t be inserted before the

\begin{document}. Hence, we initially define \plmac@write@perl@i as a do-
nothing macro and redefine it as “\fbox{Perl\TeX}” at the \begin{document}.

299 \else

300 \newcommand{\plmac@write@perl@i}[1]{\endgroup}

\plmac@show@placeholder There’s really no point in outputting a framed “PerlTEX” when a macro is defined
and when it’s used. \plmac@show@placeholder checks the first character of the
protocol header. If it’s “D” (DEF), nothing is output. Otherwise, it’ll be “U” (USE)
and “PerlTEX” will be output.

301 \gdef\plmac@show@placeholder#1#2\@empty{%

302 \ifx#1D\relax

303 \endgroup

304 \else

305 \endgroup

306 \fbox{Perl\TeX}%

307 \fi

308 }%

309 \AtBeginDocument{%

310 \renewcommand{\plmac@write@perl@i}[1]{%

311 \plmac@show@placeholder#1\@empty

312 }%

313 }

314 \fi

3.2 perltex.pl

perltex.pl is a wrapper script for latex (or any other LATEX compiler). It
sets up client-server communication between LATEX and Perl, with LATEX as the
client and Perl as the server. When a LATEX document sends a piece of Perl
code to perltex.pl (with the help of perltex.sty, as detailed in Section 3.1),
perltex.pl executes it within a secure sandbox and transmits the resulting LATEX
code back to the document.

3.2.1 Header comments

Because perltex.pl is generated without a DocStrip preamble or postamble we
have to manually include the desired text as Perl comments.

26

315 #! /usr/bin/env perl

316

317 ###

318 # Prepare a LaTeX run for two-way communication with Perl #

319 # By Scott Pakin <scott+pt@pakin.org> #

320 ###

321

322 #---

323 # This is file ‘perltex.pl’,

324 # generated with the docstrip utility.

325 #

326 # The original source files were:

327 #

328 # perltex.dtx (with options: ‘perltex’)

329 #

330 # This is a generated file.

331 #

332 # Copyright (C) 2003-2024 Scott Pakin <scott+pt@pakin.org>

333 #

334 # This file may be distributed and/or modified under the conditions

335 # of the LaTeX Project Public License, either version 1.3c of this

336 # license or (at your option) any later version. The latest

337 # version of this license is in:

338 #

339 # http://www.latex-project.org/lppl.txt

340 #

341 # and version 1.3c or later is part of all distributions of LaTeX

342 # version 2006/05/20 or later.

343 #---

344

3.2.2 Top-level code evaluation

In previous versions of perltex.pl, the --nosafe option created and ran code
within a sandbox in which all operations are allowed (via Opcode::full_opset()).
Unfortunately, certain operations still fail to work within such a sandbox. We
therefore define a top-level “non-sandbox”, top_level_eval(), in which to exe-
cute code. top_level_eval() merely calls eval() on its argument. However, it
needs to be declared top-level and before anything else because eval() runs in
the lexical scope of its caller.

345 sub top_level_eval ($)

346 {

347 return eval $_[0];

348 }

3.2.3 Perl modules and pragmas

We use Safe and Opcode to implement the secure sandbox, Getopt::Long and
Pod::Usage to parse the command line, and various other modules and pragmas
for miscellaneous things.

349 use Safe;

350 use Opcode;

351 use Getopt::Long;

27

352 use Pod::Usage;

353 use File::Basename;

354 use Fcntl;

355 use POSIX;

356 use File::Spec;

357 use IO::Handle;

358 use warnings;

359 use strict;

3.2.4 Variable declarations

With use strict in effect, we need to declare all of our variables. For clarity, we
separate our global-variable declarations into variables corresponding to command-
line options and other global variables.

Variables corresponding to command-line arguments

$latexprog

$runsafely

@permittedops

$usepipe

$latexprog is the name of the LATEX executable (e.g., “latex”). If $runsafely
is 1 (the default), then the user’s Perl code runs in a secure sandbox; if it’s 0,
then arbitrary Perl code is allowed to run. @permittedops is a list of features
made available to the user’s Perl code. Valid values are described in Perl’s Opcode
manual page. perltex.pl’s default is a list containing only :browse. $usepipe

is 1 if perltex.pl should attempt to use a named pipe for communicating with
latex or 0 if an ordinary file should be used instead.

360 my $latexprog;

361 my $runsafely = 1;

362 my @permittedops;

363 my $usepipe = 1;

Filename variables

$progname

$jobname

$toperl

$fromperl

$toflag

$fromflag

$doneflag

$logfile

$pipe

$progname is the run-time name of the perltex.pl program. $jobname is the
base name of the user’s .tex file, which defaults to the TEX default of texput.
$toperl defines the filename used for LATEX-to-Perl communication. $fromperl

defines the filename used for Perl-to-LATEX communication. $toflag is the name
of a file that will exist only after LATEX creates $tofile. $fromflag is the name
of a file that will exist only after Perl creates $fromfile. $doneflag is the name
of a file that will exist only after Perl deletes $fromflag. $logfile is the name
of a log file to which perltex.pl writes verbose execution information. $pipe is
the name of a Unix named pipe (or ordinary file on operating systems that lack
support for persistent named pipes or in the case that $usepipe is set to 0) used
to convince the latex process to yield control of the CPU.

364 my $progname = basename $0;

365 my $jobname = "texput";

366 my $toperl;

367 my $fromperl;

368 my $toflag;

369 my $fromflag;

370 my $doneflag;

371 my $logfile;

372 my $pipe;

28

Other global variables

@latexcmdline

$styfile

@macroexpansions

$sandbox

$sandbox_eval

$latexpid

@latexcmdline is the command line to pass to the LATEX executable. $styfile is
the string noperltex.sty if perltex.pl is run with --makesty, otherwise unde-
fined. @macroexpansions is a list of PerlTEX macro expansions in the order they
were encountered. It is used for creating a noperltex.sty file when --makesty

is specified. $sandbox is a secure sandbox in which to run code that appeared
in the LATEX document. $sandbox_eval is a subroutine that evalutes a string
within $sandbox (normally) or outside of all sandboxes (if --nosafe is specified).
$latexpid is the process ID of the latex process.

373 my @latexcmdline;

374 my $styfile;

375 my @macroexpansions;

376 my $sandbox = new Safe;

377 my $sandbox_eval;

378 my $latexpid;

$pipestring $pipestring is a constant string to write to the $pipe named pipe (or file) at each
LATEX synchronization point. Its particular definition is really a bug workaround
for X ETEX. The current version of X ETEX reads the first few bytes of a file to
determine the character encoding (UTF-8 or UTF-16, big-endian or little-endian)
then attempts to rewind the file pointer. Because pipes can’t be rewound, the effect
is that the first two bytes of $pipe are discarded and the rest are input. Hence,
the “\endinput” used in prior versions of PerlTEX inserted a spurious “ndinput”
into the author’s document. We therefore define $pipestring such that it will
not interfere with the document even if the first few bytes are discarded.

379 my $pipestring = "\%\%\%\%\% Generated by $progname\n\\endinput\n";

3.2.5 Command-line conversion

In this section, perltex.pl parses its own command line and prepares a command
line to pass to latex.

Parsing perltex.pl’s command line We first set $latexprog to be the con-
tents of the environment variable PERLTEX or the value “latex” if PERLTEX is not
specified. We then use Getopt::Long to parse the command line, leaving any
parameters we don’t recognize in the argument vector (@ARGV) because these are
presumably latex options.

380 $latexprog = $ENV{"PERLTEX"} || "latex";

381 Getopt::Long::Configure("require_order", "pass_through");

382 GetOptions("help" => sub {pod2usage(-verbose => 1)},

383 "latex=s" => \$latexprog,

384 "safe!" => \$runsafely,

The following two options are undocumented because the defaults should always
suffice. We’re not yet removing these options, however, in case they turn out to
be useful for diagnostic purposes.

385 "pipe!" => \$usepipe,

386 "synctext=s" => \$pipestring,

387 "makesty" => sub {$styfile = "noperltex.sty"},

388 "permit=s" => \@permittedops) || pod2usage(2);

29

Preparing a LATEX command line

$firstcmd

$option

We start by searching @ARGV for the first string that does not start with “-” or
“\”. This string, which represents a filename, is used to set $jobname.

389 @latexcmdline = @ARGV;

390 my $firstcmd = 0;

391 for ($firstcmd=0; $firstcmd<=$#latexcmdline; $firstcmd++) {

392 my $option = $latexcmdline[$firstcmd];

393 next if substr($option, 0, 1) eq "-";

394 if (substr ($option, 0, 1) ne "\\") {

395 $jobname = basename $option, ".tex" ;

396 $latexcmdline[$firstcmd] = "\\input $option";

397 }

398 last;

399 }

400 push @latexcmdline, "" if $#latexcmdline==-1;

$separator To avoid conflicts with the code and parameters passed to Perl from LATEX (see Fig-
ure 1 on page 15 and Figure 2 on page 15) we define a separator string, $separator,
containing 20 random uppercase letters.

401 my $separator = "";

402 foreach (1 .. 20) {

403 $separator .= chr(ord("A") + rand(26));

404 }

Now that we have the name of the LATEX job ($jobname) we can assign
$toperl, $fromperl, $toflag, $fromflag, $doneflag, $logfile, and $pipe in
terms of $jobname plus a suitable extension.

405 $toperl = $jobname . ".topl";

406 $fromperl = $jobname . ".frpl";

407 $toflag = $jobname . ".tfpl";

408 $fromflag = $jobname . ".ffpl";

409 $doneflag = $jobname . ".dfpl";

410 $logfile = $jobname . ".lgpl";

411 $pipe = $jobname . ".pipe";

We now replace the filename of the .tex file passed to perltex.pl with a
\definition of the separator character, \definitions of the various files, and the
original file with \input prepended if necessary.

412 $latexcmdline[$firstcmd] =

413 sprintf ’\makeatletter’ . ’\def%s{%s}’ x 7 . ’\makeatother%s’,

414 ’\plmac@tag’, $separator,

415 ’\plmac@tofile’, $toperl,

416 ’\plmac@fromfile’, $fromperl,

417 ’\plmac@toflag’, $toflag,

418 ’\plmac@fromflag’, $fromflag,

419 ’\plmac@doneflag’, $doneflag,

420 ’\plmac@pipe’, $pipe,

421 $latexcmdline[$firstcmd];

3.2.6 Increasing PerlTEX’s robustness

422 $toperl = File::Spec->rel2abs($toperl);

423 $fromperl = File::Spec->rel2abs($fromperl);

30

424 $toflag = File::Spec->rel2abs($toflag);

425 $fromflag = File::Spec->rel2abs($fromflag);

426 $doneflag = File::Spec->rel2abs($doneflag);

427 $logfile = File::Spec->rel2abs($logfile);

428 $pipe = File::Spec->rel2abs($pipe);

perltex.pl may hang if latex exits right before the final pipe communication.
We therefore define a simple sigalrm handler that lets perltex.pl exit after a
given length of time has elapsed.
429 $SIG{"ALRM"} = sub {

430 undef $latexpid;

431 exit 0;

432 };

To prevent Perl from aborting with a “Broken pipe” error message if latex
exits during the final pipe communication we tell Perl to ignore sigpipe errors.
latex’s exiting will be caught via other means (the preceding sigalrm handler
or the following call to waitpid).
433 $SIG{"PIPE"} = "IGNORE";

delete_files On some operating systems and some filesystems, deleting a file may not cause
the file to disappear immediately. Because PerlTEX synchronizes Perl and LATEX
via the filesystem it is critical that file deletions be performed when requested.
We therefore define a delete_files subroutine that waits until each file named
in the argument list is truly deleted.

434 sub delete_files (@)

435 {

436 foreach my $filename (@_) {

437 unlink $filename;

438 while (-e $filename) {

439 unlink $filename;

440 sleep 0;

441 }

442 }

443 }

awaitexists We define an awaitexists subroutine that waits for a given file to exist. If latex
exits while awaitexists is waiting, then perltex.pl cleans up and exits, too.

444 sub awaitexists ($)

445 {

446 while (!-e $_[0]) {

447 sleep 0;

448 if (waitpid($latexpid, &WNOHANG)==-1) {

449 delete_files($toperl, $fromperl, $toflag,

450 $fromflag, $doneflag, $pipe);

451 undef $latexpid;

452 exit 0;

453 }

454 }

455 }

3.2.7 Launching LATEX

We start by deleting the $toperl, $fromperl, $toflag, $fromflag, $doneflag,
and $pipe files, in case any of these were left over from a previous (aborted) run.

31

We also create a log file ($logfile), a named pipe ($pipe)—or a file containing
only \endinput if we can’t create a named pipe—and, if $styfile is defined, a
LATEX2ε style file. As @latexcmdline contains the complete command line to
pass to latex we need only fork a new process and have the child process overlay
itself with latex. perltex.pl continues running as the parent.

456 delete_files($toperl, $fromperl, $toflag, $fromflag, $doneflag, $pipe);

457 open (LOGFILE, ">$logfile") || die "open(\"$logfile\"): $!\n";

458 autoflush LOGFILE 1;

459 if (defined $styfile) {

460 open (STYFILE, ">$styfile") || die "open(\"$styfile\"): $!\n";

461 }

462 if (!$usepipe || !eval {mkfifo($pipe, 0600)}) {

463 sysopen PIPE, $pipe, O_WRONLY|O_CREAT, 0755;

464 autoflush PIPE 1;

465 print PIPE $pipestring;

466 close PIPE;

467 $usepipe = 0;

468 }

469 defined ($latexpid = fork) || die "fork: $!\n";

470 unshift @latexcmdline, $latexprog;

471 if (!$latexpid) {

472 exec {$latexcmdline[0]} @latexcmdline;

473 die "exec(’@latexcmdline’): $!\n";

474 }

3.2.8 Preparing a sandbox

perltex.pl uses Perl’s Safe and Opcode modules to declare a secure sandbox
($sandbox) in which to run Perl code passed to it from LATEX. When the sandbox
compiles and executes Perl code, it permits only operations that are deemed safe.
For example, the Perl code is allowed by default to assign variables, call functions,
and execute loops. However, it is not normally allowed to delete files, kill pro-
cesses, or invoke other programs. If perltex.pl is run with the --nosafe option
we bypass the sandbox entirely and execute Perl code using an ordinary eval()

statement.

475 if ($runsafely) {

476 @permittedops=(":browse") if $#permittedops==-1;

477 $sandbox->permit_only (@permittedops);

478 $sandbox_eval = sub {$sandbox->reval($_[0])};

479 }

480 else {

481 $sandbox_eval = \&top_level_eval;

482 }

3.2.9 Communicating with LATEX

The following code constitutes perltex.pl’s main loop. Until latex exits, the
loop repeatedly reads Perl code from LATEX, evaluates it, and returns the result
as per the protocol described in Figure 4 on page 23.

483 while (1) {

32

$entirefile Wait for $toflag to exist. When it does, this implies that $toperl must exist as
well. We read the entire contents of $toperl into the $entirefile variable and
process it. Figures 1 and 2 illustrate the contents of $toperl.

484 awaitexists($toflag);

485 my $entirefile;

486 {

487 local $/ = undef;

488 open (TOPERL, "<$toperl") || die "open($toperl): $!\n";

489 $entirefile = <TOPERL>;

490 close TOPERL;

491 }

$optag

$macroname

@otherstuff

We split the contents of $entirefile into an operation tag (either DEF, USE,
or RUN), the macro name, and everything else (@otherstuff). If $optag is
DEF then @otherstuff will contain the Perl code to define. If $optag is USE

then @otherstuff will be a list of subroutine arguments. If $optag is RUN then
@otherstuff will be a block of Perl code to run.

492 $entirefile =~ s/\r//g;

493 my ($optag, $macroname, @otherstuff) =

494 map {chomp; $_} split "$separator\n", $entirefile;

We clean up the macro name by deleting all leading non-letters, replacing all
subsequent non-alphanumerics with “_”, and prepending “latex_” to the macro
name.

495 $macroname =~ s/^[^A-Za-z]+//;

496 $macroname =~ s/\W/_/g;

497 $macroname = "latex_" . $macroname;

If we’re calling a subroutine, then we make the arguments more palatable to
Perl by single-quoting them and replacing every occurrence of “\” with “\\” and
every occurrence of “’” with “\’”.

498 if ($optag eq "USE") {

499 foreach (@otherstuff) {

500 s/\\/\\\\/g;

501 s/\’/\\\’/g;

502 $_ = "’$_’";

503 }

504 }

$perlcode There are three possible values that can be assigned to $perlcode. If $optag
is DEF, then $perlcode is made to contain a definition of the user’s subroutine,
named $macroname. If $optag is USE, then $perlcode becomes an invocation of
$macroname which gets passed all of the macro arguments. Finally, if $optag is
RUN, then $perlcode is the unmodified Perl code passed to us from perltex.sty.
Figure 5 presents an example of how the following code converts a PerlTEX macro
definition into a Perl subroutine definition and Figure 6 presents an example of
how the following code converts a PerlTEX macro invocation into a Perl subroutine
invocation.

505 my $perlcode;

506 if ($optag eq "DEF") {

507 $perlcode =

508 sprintf "sub %s {%s}\n",

33

LATEX: \perlnewcommand{\mymacro}[2]{%

sprintf "Isn’t $_[0] %s $_[1]?\n",

$_[0]>=$_[1] ? ">=" : "<"

}

⇓
Perl: sub latex_mymacro {

sprintf "Isn’t $_[0] %s $_[1]?\n",

$_[0]>=$_[1] ? ">=" : "<"

}

Figure 5: Conversion from LATEX to Perl (subroutine definition)

LATEX: \mymacro{12}{34}

⇓
Perl: latex_mymacro (’12’, ’34’);

Figure 6: Conversion from LATEX to Perl (subroutine invocation)

509 $macroname, $otherstuff[0];

510 }

511 elsif ($optag eq "USE") {

512 $perlcode = sprintf "%s (%s);\n", $macroname, join(", ", @otherstuff);

513 }

514 elsif ($optag eq "RUN") {

515 $perlcode = $otherstuff[0];

516 }

517 else {

518 die "${progname}: Internal error -- unexpected operation tag \"$optag\"\n";

519 }

Log what we’re about to evaluate.

520 print LOGFILE "#" x 31, " PERL CODE ", "#" x 32, "\n";

521 print LOGFILE $perlcode, "\n";

$result

$msg

We’re now ready to execute the user’s code using the $sandbox_eval function.
If a warning occurs we write it as a Perl comment to the log file. If an error oc-
curs (i.e., $@ is defined) we replace the result ($result) with a call to LATEX2ε’s
\PackageError macro to return a suitable error message. We produce one error
message for sandbox policy violations (detected by the error message, $@, con-
taining the string “trapped by”) and a different error message for all other errors
caused by executing the user’s code. For clarity of reading both warning and er-
ror messages, we elide the string “at (eval ⟨number⟩) line ⟨number⟩”. Once
$result is defined—as either the resulting LATEX code or as a \PackageError—
we store it in @macroexpansions in preparation for writing it to noperltex.sty

(when perltex.pl is run with --makesty).

34

522 undef $_;

523 my $result;

524 {

525 my $warningmsg;

526 local $SIG{__WARN__} =

527 sub {chomp ($warningmsg=$_[0]); return 0};

528 $result = $sandbox_eval->($perlcode);

529 if (defined $warningmsg) {

530 $warningmsg =~ s/at \(eval \d+\) line \d+\W+//;

531 print LOGFILE "# ===> $warningmsg\n\n";

532 }

533 }

534 $result = "" if !$result || $optag eq "RUN";

535 if ($@) {

536 my $msg = $@;

537 $msg =~ s/at \(eval \d+\) line \d+\W+//;

538 $msg =~ s/\n/\\MessageBreak\n/g;

539 $msg =~ s/\s+/ /;

540 $result = "\\PackageError{perltex}{$msg}";

541 my @helpstring;

542 if ($msg =~ /\btrapped by\b/) {

543 @helpstring =

544 ("The preceding error message comes from Perl. Apparently,",

545 "the Perl code you tried to execute attempted to perform an",

546 "‘unsafe’ operation. If you trust the Perl code (e.g., if",

547 "you wrote it) then you can invoke perltex with the --nosafe",

548 "option to allow arbitrary Perl code to execute.",

549 "Alternatively, you can selectively enable Perl features",

550 "using perltex’s --permit option. Don’t do this if you don’t",

551 "trust the Perl code, however; malicious Perl code can do a",

552 "world of harm to your computer system.");

553 }

554 else {

555 @helpstring =

556 ("The preceding error message comes from Perl. Apparently,",

557 "there’s a bug in your Perl code. You’ll need to sort that",

558 "out in your document and re-run perltex.");

559 }

560 my $helpstring = join ("\\MessageBreak\n", @helpstring);

561 $helpstring =~ s/\. /.\\space\\space /g;

562 $result .= "{$helpstring}";

563 }

564 push @macroexpansions, $result if defined $styfile && $optag eq "USE";

Log the resulting LATEX code.

565 print LOGFILE "%" x 30, " LATEX RESULT ", "%" x 30, "\n";

566 print LOGFILE $result, "\n\n";

We add \endinput to the generated LATEX code to suppress an extraneous
end-of-line character that TEX would otherwise insert.

567 $result .= ’\endinput’;

Continuing the protocol described in Figure 4 on page 23 we now write $result
(which contains either the result of executing the user’s or a \PackageError) to
the $fromperl file, delete $toflag, $toperl, and $doneflag, and notify LATEX

35

by touching the $fromflag file. As a performance optimization, we also write
\endinput into $pipe to wake up the latex process.

568 open (FROMPERL, ">$fromperl") || die "open($fromperl): $!\n";

569 syswrite FROMPERL, $result;

570 close FROMPERL;

571 delete_files($toflag, $toperl, $doneflag);

572 open (FROMFLAG, ">$fromflag") || die "open($fromflag): $!\n";

573 close FROMFLAG;

574 if (open (PIPE, ">$pipe")) {

575 autoflush PIPE 1;

576 print PIPE $pipestring;

577 close PIPE;

578 }

We have to perform one final LATEX-to-Perl synchronization step. Otherwise,
a subsequent \perl[re]newcommand would see that $fromflag already exists and
race ahead, finding that $fromperl does not contain what it’s supposed to.

579 awaitexists($toperl);

580 delete_files($fromflag);

581 open (DONEFLAG, ">$doneflag") || die "open($doneflag): $!\n";

582 close DONEFLAG;

Again, we awaken the latex process, which is blocked on $pipe. If writing to the
pipe takes more than one second we assume that latex has exited and trigger the
sigalrm handler (page 31).

583 alarm 1;

584 if (open (PIPE, ">$pipe")) {

585 autoflush PIPE 1;

586 print PIPE $pipestring;

587 close PIPE;

588 }

589 alarm 0;

590 }

3.2.10 Final cleanup

If we exit abnormally we should do our best to kill the child latex process so that
it doesn’t continue running forever, holding onto system resources.

591 END {

592 close LOGFILE;

593 if (defined $latexpid) {

594 kill (9, $latexpid);

595 exit 1;

596 }

597

598 if (defined $styfile) {

This is the big moment for the --makesty option. We’ve accumulated the output
from each PerlTEX macro invocation into @macroexpansions, and now we need
to produce a noperltex.sty file. We start by generating a boilerplate header in
which we set up the package and load both perltex and filecontents.

599 print STYFILE <<"STYFILEHEADER1";

36

600 \\NeedsTeXFormat{LaTeX2e}[1999/12/01]

601 \\ProvidesPackage{noperltex}

602 [2007/09/29 v1.4 Perl-free version of PerlTeX specific to $jobname.tex]

603 STYFILEHEADER1

604 ;

605 print STYFILE <<’STYFILEHEADER2’;

606 \RequirePackage{filecontents}

607

608 % Suppress the "Document must be compiled using perltex" error from perltex.

609 \let\noperltex@PackageError=\PackageError

610 \renewcommand{\PackageError}[3]{}

611 \RequirePackage{perltex}

612 \let\PackageError=\noperltex@PackageError

613

\plmac@macro@invocation@num

\plmac@show@placeholder

noperltex.sty works by redefining the \plmac@show@placeholder macro, which
normally outputs a framed “PerlTEX” when perltex.pl isn’t running, changing
it to input noperltex-⟨number⟩.tex instead (where ⟨number⟩ is the contents
of the \plmac@macro@invocation@num counter). Each noperltex-⟨number⟩.tex
file contains the output from a single invocation of a PerlTEX-defined macro.

614 % Modify \plmac@show@placeholder to input the next noperltex-*.tex file

615 % each time a PerlTeX-defined macro is invoked.

616 \newcount\plmac@macro@invocation@num

617 \gdef\plmac@show@placeholder#1#2\@empty{%

618 \ifx#1U\relax

619 \endgroup

620 \advance\plmac@macro@invocation@num by 1\relax

621 \global\plmac@macro@invocation@num=\plmac@macro@invocation@num

622 \input{noperltex-\the\plmac@macro@invocation@num.tex}%

623 \else

624 \endgroup

625 \fi

626 }

627 STYFILEHEADER2

628 ;

Finally, we need to have noperltex.sty generate each of the
noperltex-⟨number⟩.tex files. For each element of @macroexpansions we
use one filecontents environment to write the macro expansion verbatim to a
file.

629 foreach my $e (0 .. $#macroexpansions) {

630 print STYFILE "\n";

631 printf STYFILE "%% Invocation #%d\n", 1+$e;

632 printf STYFILE "\\begin{filecontents}{noperltex-%d.tex}\n", 1+$e;

633 print STYFILE $macroexpansions[$e], "\\endinput\n";

634 print STYFILE "\\end{filecontents}\n";

635 }

636 print STYFILE "\\endinput\n";

637 close STYFILE;

638 }

639

640 exit 0;

641 }

37

642

643 __END__

3.2.11 perltex.pl POD documentation

perltex.pl includes documentation in Perl’s POD (Plain Old Documentation)
format. This is used both to produce manual pages and to provide usage informa-
tion when perltex.pl is invoked with the --help option. The POD documenta-
tion is not listed here as part of the documented perltex.pl source code because
it contains essentially the same information as that shown in Section 2.3. If you’re
curious what the POD source looks like then see the generated perltex.pl file.

3.3 Porting to other languages

Perl is a natural choice for a LATEX macro language because of its excellent support
for text manipulation including extended regular expressions, string interpolation,
and “here” strings, to name a few nice features. However, Perl’s syntax is unusual
and its semantics are rife with annoying special cases. Some users will therefore
long for a ⟨some-language-other-than-Perl⟩TEX. Fortunately, porting PerlTEX to
use a different language should be fairly straightforward. perltex.pl will need to
be rewritten in the target language, of course, but perltex.sty modifications will
likely be fairly minimal. In all probability, only the following changes will need to
be made:

• Rename perltex.sty and perltex.pl (and choose a package name other
than “PerlTEX”) as per the PerlTEX license agreement (Section 4).

• In your replacement for perltex.sty, replace all occurrences of “plmac”
with a different string.

• In your replacement for perltex.pl, choose different file extensions for the
various helper files.

The importance of these changes is that they help ensure version consistency
and that they make it possible to run ⟨some-language-other-than-Perl⟩TEX along-
side PerlTEX, enabling multiple programming languages to be utilized in the same
LATEX document.

4 License agreement

Copyright © 2003–2024 Scott Pakin <scott+pt@pakin.org>

These files may be distributed and/or modified under the conditions of the LATEX
Project Public License, either version 1.3c of this license or (at your option) any
later version. The latest version of this license is in http://www.latex-project.

org/lppl.txt and version 1.3c or later is part of all distributions of LATEX version
2006/05/20 or later.

38

http://www.latex-project.org/lppl.txt
http://www.latex-project.org/lppl.txt

Acknowledgments

Thanks to Andrew Mertz for writing the first draft of the code that produces the
PerlTEX-free noperltex.sty style file and for testing the final draft; to Andrei
Alexandrescu for providing a few bug fixes; to Nick Andrewes for identifying and
helping diagnose a problem running PerlTEX with X ETEX and to Jonathan Kew
for suggesting a workaround; to Linus Källberg for reporting and helping diag-
nose some problems with running PerlTEX on Windows; and to Ulrike Fischer
for reporting and helping correct a bug encountered when using noperltex.sty

with newer versions of LATEX. Also, thanks to the many people who have sent
me fan mail or submitted bug reports, documentation corrections, or feature re-
quests. (The \perldo macro and the --makesty option were particularly popular
requests.)

Change History

v1.0

General: Initial version 1

v1.0a

General: Made all unlink calls
wait for the file to actually
disappear 26

Undefined $/ only locally 32

awaitexists: Bug fix: Added
“undef $latexpid” to make
the END block correctly return
a status code of 0 on success . 31

v1.1

General: Added new
\perlnewenvironment and
\perlrenewenvironment

macros 20

\plmac@havecode: Added a
\plmac@next hook to support
PerlTEX’s new
environment-defining macros . 18

\plmac@write@perl@i: Added a
dummy version of the macro to
use if latex was launched
directly, without perltex.pl . 26

Made argument-handling more
rational by making \protect,
\begin, and \end

non-expandable 25

v1.2

General: Renamed
perlmacros.sty to
perltex.sty for consistency. . . 1

\plmac@write@perl@i: Moved the
\input of the generated Perl
code to the end of the routine

in order to support recursive
PerlTEX macro invocations. . . 25

v1.3

General: Modified perltex.pl to
eschew the sandbox altogether
when --nosafe is specified . . 27

\perldo: Introduced \perldo to
support code execution outside
of all subroutines. 22

\plmac@run@code: Added to assist
\perldo 22

v1.4

General: Added support for a
--makesty option that
generates a PerlTEX-free style
file called noperltex.sty . . . 36

v1.5

\plmac@file@existsfalse:
Modified to read from a named
pipe before checking file
existence 24

v1.6

General: Added an
(undocumented) --nopipe
option to perltex.pl to help it
work with X ETEX 29

v1.7

General: Added an
(undocumented) --synctext
option to alter the text written
to $pipe 29

$pipestring: Introduced this
variable as a workaround for
X ETEX’s attempt to rewind
$pipe 29

39

v1.8
\plmac@requiredfalse:

Introduced an optional

package option to suppress the
“must be compiled using
perltex” error message 13

\plmac@write@perl@i: Renamed
\ifplmac@have@perltex to
\ifperl to help authors write
mixed LATEX/PerlTEX
documents 25

v1.9
General: Introduced handlers for

sigalrm and sigpipe to make
perltex.pl more robust to
latex exiting at an
inopportune time 31

delete_files: Replaced all
unlink. . . while -e statements
with calls to a new
delete files subroutine 31

\plmac@await@existence: Put the
\input\plmac@pipe within an
lrbox environment to prevent
a partial read from introducing
spurious text into the
document 24

awaitexists: Hoisted
$awaitexists from the main
loop and made it a top-level
subroutine 31

v2.0
General: Refer to each

communication file using its
absolute path. This makes
perltex.pl robust to user
code that changes the current
directory 30

$msg: Substituted \MessageBreak

for newline when reporting
error messages produced by
user code 34

v2.1
General: Replaced abs path()

with File::Spec->rel2abs()

because the latter seems to be
more robust to nonexistent files 30

@otherstuff: Normalized line
endings across
Unix/Windows/Macintosh . . . 33

v2.2
\perlfalse: Let-bind \plmac@tag

to \relax if \plmac@tag is
undefined. This corrects a
problem when noperltex is
used with newer versions of
LATEX 14

v2.3
\plmac@IfFileExists: Introduce

this macro, which implements
a non-caching version of
\IfFileExists 23

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\$doneflag 364
\$entirefile 484
\$firstcmd 389
\$fromflag 364
\$fromperl 364
\$jobname 364
\$latexpid 373
\$latexprog 360
\$logfile 364
\$macroname 492
\$msg . 522
\$optag . 492
\$option . 389

\$perlcode 505
\$pipe . 364
\$pipestring 379
\$progname 364
\$result . 522
\$runsafely 360
\$sandbox 373
\$sandbox_eval 373
\$separator 401
\$styfile 373
\$toflag . 364
\$toperl . 364
\$usepipe 360
\% . 379

40

\& . 481
\@latexcmdline 373
\@macroexpansions 373
\@otherstuff 492
\@permittedops 360
\@tempboxa 260

A
\afterassignment 138, 232
\AtBeginDocument 309
\awaitexists 444

C
\closein . 253
\closeout 289, 292, 295

D
\DeclareOption 66
\delete_files 434
\do 132, 226, 274
\dospecials 132, 226, 274

E
\endinput 567
\endlinechar 135, 229, 277
environ (package) 10

F
\fbox . 306
filecontents (package) 36

H
hyperref (package) 10

I
\ifperl 68, 282
\ifplmac@file@exists 258
\ifplmac@required 64, 79
\input 261, 297, 622

N
\newlinechar 134, 228, 276
\noperltex@PackageError . . . 609, 612

O
\openin . 249
\openout 284, 291, 294
optional (package option) 5, 10

P
package options

optional 5, 10
\PackageError 80, 609, 610, 612
packages

environ 10

filecontents 36
hyperref 10
perltex 1, 4, 5, 10,

12, 13, 16, 20, 22, 25, 26, 33, 36, 38
\perldo . 224
\perlfalse 68
\perlnewcommand 94
\perlnewenvironment 190
\perlrenewcommand 94
\perlrenewenvironment 190
perltex (package) 1, 4, 5, 10,

12, 13, 16, 20, 22, 25, 26, 33, 36, 38
\perltrue 68
\plmac@argnum . 142, 160, 162, 166, 167
\plmac@await@existence 258, 293, 296
\plmac@body 154
\plmac@cleaned@macname

. 104, 148, 157, 200, 213
\plmac@command 94, 173, 180, 190
\plmac@defarg 121, 171, 181
\plmac@define@command 170
\plmac@define@sub 145
\plmac@doneflag 296, 419
\plmac@end@environment 192, 197, 213
\plmac@end@macro 215, 218
\plmac@envname 200, 215, 219
\plmac@file@existsfalse 258
\plmac@file@existstrue 258
\plmac@fromfile 297, 416
\plmac@fromflag 293, 418
\plmac@hash 159
\plmac@have@run@code 232, 235
\plmac@haveargs 123, 127, 129
\plmac@havecode 138, 143
\plmac@IfFileExists 247, 264
\plmac@infile 247
\plmac@macname

. 104, 170, 173, 180, 186, 200, 213
\plmac@macro@invocation@num 614
\plmac@newcommand@i 97, 102, 104
\plmac@newcommand@ii 114, 116, 211, 222
\plmac@newcommand@iii@no@opt 119, 121
\plmac@newcommand@iii@opt . . 118, 121
\plmac@newenvironment@i 193, 198, 200
\plmac@next

. . 94, 188, 190, 213, 251, 254, 256
\plmac@numargs 116, 162, 174, 181
\plmac@oldbody 104, 186, 200, 213
\plmac@outfile 271,

284, 288, 289, 291, 292, 294, 295
\plmac@perlcode . . . 129, 150, 233, 242
\plmac@pipe 261, 420
\plmac@requiredfalse 64
\plmac@requiredtrue 64

41

\plmac@run@code 235

\plmac@sep 141,
146–149, 155, 156, 165, 238–241

\plmac@show@placeholder 301, 311, 614

\plmac@starchar . . . 104, 173, 180, 200

\plmac@tag 70,
147, 149, 156, 165, 239, 241, 414

\plmac@tofile 284, 294, 415

\plmac@toflag 291, 417

\plmac@write@perl
. 146, 175, 182, 238, 272

\plmac@write@perl@i . . . 280, 282, 299

R
\renewcommand 101, 196, 310, 610
\RequirePackage 606, 611

S
sigalrm 31, 36
sigpipe . 31

T
\typeout 89, 90

W
\write . 288

42

	1 Introduction
	2 Usage
	2.1 Defining and redefining Perl macros
	2.2 Making perltex.pl optional
	2.3 Invoking perltex.pl
	2.4 A large, complete example

	3 Implementation
	3.1 perltex.sty
	3.1.1 Package initialization
	3.1.2 Defining Perl macros
	3.1.3 Defining Perl environments
	3.1.4 Executing top-level Perl code
	3.1.5 Communication between LaTeX and Perl

	3.2 perltex.pl
	3.2.1 Header comments
	3.2.2 Top-level code evaluation
	3.2.3 Perl modules and pragmas
	3.2.4 Variable declarations
	3.2.5 Command-line conversion
	3.2.6 Increasing PerlTeX's robustness
	3.2.7 Launching LaTeX
	3.2.8 Preparing a sandbox
	3.2.9 Communicating with LaTeX
	3.2.10 Final cleanup
	3.2.11 perltex.pl POD documentation

	3.3 Porting to other languages

	4 License agreement
	Change History
	Index
	Symbols
	A
	C
	D
	E
	F
	H
	I
	N
	O
	P
	R
	S
	T
	W

